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INTRODUCTION

Gastro-intestinal parasitism by a single species is an 
exception in veld conditions in ruminants (Cox, 

2001; Telfer et al., 2010; Mpofu et al., 2020). The fact, 
until recently more or less ignored, is that most parasites 
co-exist with other parasites (Telfer et al., 2010; Thumbi 

et al., 2014). Furthermore, parasites that concurrently 
infect a host may interact with each other, especially those 
occupying the same niche area within their host might 
change their respective niches, consequently, they may 
eventually be able to co-exist (Poulin, 2007; Cattadori et 
al., 2008). Interactions between organisms, whether direct 
or indirect, are important in determining the community 
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structure and bringing forth biodiversity (Bonsall and 
Hassell, 1997). In the parasite communities infecting 
livestock populations, direct interactions may arise when 
these parasites compete for common resources, such as 
food or space (Lello et al., 2004; Mideo, 2009), however, 
the population size of either or both pathogens involved 
may be limited as a result (Petney and Andrews, 1998). 
Notably, depending on which other gastro-intestinal 
parasites (GIPs) present in the gastro-intestinal tract of 
an animal, notably, the attachment sites of these GIPs 
may vary significantly (Ellis et al., 1999; Vaumourin et al., 
2015). The indirect interactions may occur by modifying 
the host’s immune response (Cattadori et al., 2007; Jolles 
et al., 2008) or susceptibility to the second or other parasite 
species infection (Holmes et al., 1974; Mackenzie et al., 
1975). Interactions between concomitant parasites may 
also alter the outcome of the subsequent infection, such as 
by minimizing or prolonging prepatent times (Kaufmann 
et al., 1992; Gale et al., 1997), or by increasing pathogens 
pathogenicity (Kaufmann et al., 1992; Goossens et al., 
1997; Petney and Andrews, 1998).

Environmental factors may influence the transmission or 
reproductive rate of one parasite over the other (Petney 
and Andrews, 1998; Altizer et al., 2006; Ezenwa and 
Jolles, 2011), interactions between various parasites might 
determine how climatic conditions affect host-parasite 
dynamics of an individual. Within the host, parasites that 
concurrently exist may have a synergistic or antagonistic 
interaction that may determine important repercussions 
on animal health (Cattadori et al., 2008; Ezenwa et al., 
2010) attributed to the fact that they could modify the 
epidemiology, infection duration of other several parasites, 
and host susceptibility and thus treatment and control 
measures. The relative incidence of a particular infection 
induced by one parasite can intensify the risk of exposure 
to a second parasite (Karvonen et al., 2009), even though 
the interactions within the host are antagonistic. The 
host behaviour, environmental factors, infection history, 
and pathology influence the interactions between the 
parasites (Poulin, 2007; Behnke, 2008; Telfer et al., 2008), 
complexifying the interactions whether it influences 
between-host or within-host mechanisms (Hawley and 
Altizer, 2010).

In natural grazing systems, goats are commonly co-infected 
with multiple GIPs (Ntonifor et al., 2013; Tsotetsi et al., 
2013; Verma et al., 2018; Mpofu et al., 2020). Noteworthy, 
the prevalence of different GIPs has been well recorded 
including South Africa (Tsotetsi and Mbati, 2003; Gwaze 
et al., 2009; Mpofu et al., 2020) and other African countries 
(Odoi et al., 2007; Ntonifor et al., 2013; Zvinorova et al., 
2016). The GIPs are regulated by an acquired immune 
response, depicted by a type III response or convex age-
intensity relationship (Hudson et al., 2006; Cattadori et al., 

2008) as a response to the historical exposure to parasites 
(Woolhouse, 1992, 1998). This age-intensity curve is 
substantially illustrated by simulations describing the 
development of the immunity acquired as a consequence 
of the cumulative exposure to the infective stages of the 
parasite (Woolhouse, 1992, 1998). Immune-mediated 
species interactions may determine the susceptibility 
variability and rate of infection amongst hosts and thus, 
determine the host population’s parasite community 
(Andreansky et al., 2005; Graham et al., 2005; Thorburn 
et al., 2006; Cattadori et al., 2007, 2008). This type of 
competition result because of the negative interaction 
between the two parasite species, not due to competition 
for resources (food and space) but attributed to a common 
predator (Holt, 1977; Bashey, 2015).

Despite growing attention in parasite co-infections, 
surprisingly, very few studies have evaluated the factors 
that be accredited for observed GIPs co-infection and their 
interactions in goats. The challenge is that co-infections 
or multi-parasitism is complex to describe, in particular, 
detecting interaction among associations (Keesing et al., 
2010), particularly in the natural systems (Lello et al., 2004; 
Fenton et al., 2014) since the rate of possible interactions 
increases with the number of considered parasites (Petney 
and Andrews, 1998). Therefore, it is more pertinent to 
investigate the GIPs infections in the context of the 
comprehensive pathogenic neighbourhood of the host 
since each parasite eventually contributes to the clinical 
outcome and prediction of the infection in the individual 
host. Therefore, this study was conducted to determine how 
the concomitant infecting GIPs modifies the intensity of 
infection, distribution pattern and host susceptibility to 
parasite within the South African communal indigenous 
goat populations with respect to age and sex of goat, 
sampling season and agro-ecological zone.

MATERIALS AND METHODS

Ethical approval
This study was approved by the Animal Research Ethic 
Committee of the Faculty of Science, Tshwane University 
of Technology (FCRE 2017/10/01 (02) (SCI)). Ethical 
concerns were considered by adhering to the South African 
animal welfare regulations and practices, and experiments 
were adapted to the ethical guidelines for animal usage 
in research of Tshwane University of Technology, South 
Africa. Written informed consents were obtained from the 
communal farmers from which study samples were collected.

The parasite-host system
A longitudinal study was carried, wherein the parasite 
and host data were obtained from a population of 288 
communal indigenous goats randomly sampled in different 
agro-ecological zones (arid, semi-arid, dry sub-humid 
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and humid) of South Africa. The selected agro-ecological 
zones vary in the percentage of the land surface, rainfall 
distribution and length of the growing period, aridity 
index and vegetation type (Table 1). Ear tags (Allflex® 
- Somerset West, Western Cape, South Africa) bearing 
individual identification numbers were placed on the right 
ear of each animal during the initial sample collection in 
order to allow for repeated sampling of the same animals 
over the study period. The animals were kept under 
extensive grazing systems where during the day they were 
released to graze on communal lands and kraaled at night. 
The flocks were classified by age: adult (>2 years), young 
goat (1-2 years) and suckling kids (<1 year) as described by 
Kheirandish et al. (2014).

Sample collection and analyses
For each goat, about 10 g of fecal sample was obtained 
directly from the rectum and placed into airtight 
containers and labeled. Samples were collected twice 
during each season from each of the animals. Samples 
were maintained in cooler boxes between 2–4 °C prior and 
later refrigerated prior to analyses and transported to the 
laboratory for further coprologic examination within 24 h. 
The intensity measured by the fecal egg count (FEC) of 
the three nematodes, Strongyloides papillosus, strongyles, 
and Trichuris sp., for each goat, were determined using 
modified McMaster technique as described by Hansen and 
Perry (1994) in the positive fecal samples, and the slides 
were prepared for examined under a microscope (x10). The 
floatation fluid used was NaCl. Eggs of different GIPs were 
identified based on their sizes and morphological features 
(Foriet, 1999; Zajac and Conboy, 2006). The fecal samples 
were grounded into five drops of bloat guard to prevent 
bubbles when counting, egg count was multiplied by 
100 to give an estimation number of eggs in the animal 
system (Aumont et al., 2003). The intensity of the other 
two GIPs, Eimeria and Moniezia sp. were also quantified 
but goats co-infected with these GIPs were excluded 
from the current study as very few animals were co-
infected with these parasites.

Statistical analysis
Four sets of data were used: The first comprised goats 
infected with single GIP species, either S. papillosus, 
strongyles or Trichuris sp., the second, third and fourth 
comprised of goats co-infected by any two possible 
combinations of the three nematodes. The FEC’s for all 
GIP found were transformed through a base 10 logarithm 
(log10FEC+25) to approximate a normal distribution. The 
transformed data were used for statistical analysis. The 
General Linear Model (GLM) procedures of MiniTab 
17 were used to examine the GIPs intensity as a function 
of host characteristics (age and sex), agro-ecological zone, 
season and infection type. The FEC transformed data and 

the results were then back-transformed by taking anti-
logarithms and presented as geometric means (GFEC). 
Means were separated using Fisher’s Protected LSD test 
(p<0.05).

RESULTS

The effect of sex of the goat on the single and dual co-
infection intensities for S. papillosus, strongyles, and 
Trichuris sp. is presented in Table 2. The single infection 
intensities in male and female goats for S. papillosus, 
strongyles and Trichuris sp. were significantly similar 
(p>0.05), however, in dual co-infections for strongyles and 
S. papillosus, strongyles and Trichuris sp., the intensities 
were significantly higher (p<0.05) in females than in 
males, whilst the intensity for those co-infected with 
strongyles and Trichuris sp. remain significantly similar 
in both sexes. 

The effect of sampling season on the single and dual 
co-infection intensities for S. papillosus, strongyles, and 
Trichuris sp. is presented in Table 3. The single infection 
intensities in winter and summer sampling seasons in South 
African communal goat populations for S. papillosus and 
Trichuris sp. were significantly similar (p>0.05), whilst that 
of strongyles was significantly different (p<0.05). However, 
in dual co-infections for Trichuris and either S. papillosus 
or strongyles, the Trichuris intensity remained significantly 
similar (p>0.05) in both seasons. Goats co-infected with 
strongyles with either S. papillosus or Trichuris exhibited 
higher (p<0.05) strongyles intensity in winter compared to 
summer sampling season. In any of the co-infections for S. 
papillosus, goats exhibited similar (p>0.05) intensity of S. 
papillosus in both seasons. 

The three nematodes exhibited different age–intensity 
profiles: S. papillosus intensity remained significantly 
constant (p>0.05) with increasing host age, while the 
strongyles and Trichuris sp. intensity exhibited a significantly 
(p<0.05) type III convex age-intensity relationship (Table 
4). The intensity of the GIPs understudy increased 
numerically from a single infection to any dual co-infection. 
The strongyles intensity pattern in single infection and 
dual co-infection with S. papillosus and Trichuris sp. did not 
change, as young goats exhibited higher (p<0.05) intensity 
than other goats, whilst, that of neither S. papillosus and 
Trichuris sp. the intensity pattern was similar (p<0.05) 
between goats of different ages in co-infection. Goats of 
different ages co-infected with S. papillosus and Trichuris 
sp. exhibited similar (p>0.05) intensities. However, their 
pattern of intensity changed wherein in single infection, 
the young goats exhibited higher Trichuris sp. intensity 
but in S. papillosus co-infection the intensity was similar 
(p>0.05).
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Table 1: Agro-ecological zones and their features in South Africa.
Agro-ecologi-
cal zone

Annual Rain-
fall (mm)

Length of Grow-
ing Period (d)

Aridity in-
dex* (P/Ep)

Percentage of 
land surface

Vegetation type % range-
land

% culti-
vated

Desert < 200 22.8
Arid 201–400 <90 <0.39 24.6 Annual grassland 87 7
Semi-arid 401–600 90-179 0.40-0.79 24.6 Thorny savannahs 54 35
Dry sub-hu-
mid

601–800 180-269 0.80-0.11 18.5 Broad-leaved savannah 
woodlands

34 47

Humid 801–1000 270-365 >0.12 6.7 Rain forest and savannahs
Super humid >1000 2.8

* The ratio of precipitation to potential evapo‐transpiration; Adapted from Schulze (1997); Mpofu et al. (2017); UN, Environment 
Management Group (2011); Reynolds et al. (2007).

Table 2: Mean GFEC intensity (±SE) of different gastro-intestinal parasites single and co-infections with respect to 
sex of goat.
Sex of 
goat

Single infections Dual co-infections
Strongyles S. papillosus Trichuris 

sp.
Co-infection 1 Co-infection 2 Co-infection 3

Strongyles S. papillosus Trichuris sp. S. papillosus Trichuris sp. Strongyles
Male 199.54a ± 

26.47
125.63a ± 
26.34

130.58a ± 
26.39

313.87b ± 
26.24

271.59b ± 
26.26

282.59a ± 
28.25

221.58a ± 
26.21

229.90b ± 
26.25

453.14b ± 
26.20

Female 257.25a ± 
26.44

126.97a ± 
26.32

124.12a ± 
26.36

599.50a ± 
26.25

432.90a ± 
26.27

190.76a ± 
27.03 

252.57a ± 
26.11

369.61a 

±26.28
867.91a ± 
26.17

a, b Column means with different superscripts differs significantly (p<0.05).

Table 3: Mean GFEC intensity (±SE) of different gastro-intestinal parasites single and co-infections with respect to 
sampling season.
Sampling 
season

Single infections Dual co-infections
Strongyles S. papillo-

sus
Trichuris 
sp.

Co-infection 1 Co-infection 2 Co-infection 3
Strongyles S. papillosus Trichuris S. papillosus Trichuris Strongyles

Winter 292.42a ± 
26.44

126.00a ± 
26.32

127.64a ± 
26.36

587.00a ± 
32.94

367.88a ± 
26.25

238.88a ± 
27.78

252.57a ± 
26.18

382.18a ± 
26.25

990.40a ± 
30.88

Summer 167.43b ± 
26.42

126.48a ± 
26.30

127.57a ± 
26.35

322.71b ± 
26.22

335.72a ± 
26.24

216.32a ± 
27.10

221.58a ± 
26.12

245.81a ± 
32.94

326.24b ± 
31.02

a, b Column means with different superscripts differs significantly (p<0.05).

Table 4: Mean GFEC intensity (±SE) of different gastro-intestinal parasites single and co-infections with respect to 
goat sex.
Age of 
goat

Single infections Dual co-infections
Strongyles S. papillosus Trichuris 

sp.
Co-infection 1 Co-infection 2 Co-infection 3

Strongyles S. papillosus Trichuris S. papillosus Trichuris Strongyles
Suckling 166.99b ± 

26.68
124.89a ± 
26.49

131.97b ± 
26.56

310.81b ± 
26.53

245.18a ± 
26.49

220.95a ± 
31.22

208.90a ± 
26.34

- -

Young 576.13a ± 
26.84

126.93a ± 
26.59

424.65a ± 
26.68

500.97a ± 
26.37

231.89a ± 
26.34

282.88a ± 
28.07

241.71a ± 
26.19

255.85a ± 
26.28

853.72a ± 
26.38

Adult 148.43b ± 
26.37

127.53a ± 
26.27

129.58b ± 
26.31

355.33b ± 
26.15

280.04a ± 
26.14

195.11a ± 
28.90

234.00a ± 
26.244

340.02 a ± 
26.12

461.53b ± 
26.07

a, b, c Column means with different superscripts differs significantly (p<0.05).

The effect of the agro-ecological zone on the single and 
dual co-infection intensities for strongyles, S. papillosus, and 
Trichuris sp. is presented in Table 5. The single infection 

intensities in different agro-ecological zones in South 
African communal goat populations for strongyles and 
Trichuris sp. were significantly similar (p>0.05). Goats in 
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humid zone exhibited a higher (p<0.05) single infection 
of S. papillosus compared to those in other agro-ecological 
zones. Goats in the humid and semi-arid zone with the 
co-infection of Trichuris with S. papillosus exhibited higher 
(p<0.05) Trichuris sp. intensity compared to those in other 
zones, whilst those in arid were having low infection 

intensity. However, in dual co-infections for Trichuris and S. 
papillosus, the Trichuris sp. intensity was significantly higher 
(p<0.05) for goats in the humid zone compared to those 
in other zones. In goats co-infected with strongyles. with 
S. papillosus, the intensity of these GIPs was significantly 
similar (p>0.05) across the agro-ecological zones.

Table 5: Mean GFEC intensity (±SE) of different gastro-intestinal parasites single and co-infections with respect to 
agro-ecological zones
Agro-eco-
logical 
zones

Single infections Dual co-infections
Strongyles S. papillosus Trichuris sp. Co-infection 1 Co-infection 2 Co-infection 3

Strongyles S. papillosus Trichuris S. papillosus Trichuris Strongyles
Arid 169.17a ± 

26.72
125.75b ± 
26.51

128.61a ± 
26.59

357.42a ± 
26.25

240.76a ± 
26.27

130.40c ± 
28.91

248.20a ± 
26.24

288.58c ± 
26.41

279.68b ± 
26.28

Semi-arid 257.48a ± 
26.06

125.36b ± 
26.43

125.75a ± 
26.49

339.77a ± 
26.51

220.27a ± 
26.56

348.42b ± 
33.63

206.18a ± 
26.41

489.44a ± 
26.34

586.08a ± 
26.23

Dry 
sub-humid

192.31a ± 
26.59

125.97b 

±26.42
127.43a ± 
26.48

388.71a ± 
26.20

294.51a ± 
26.24

251.53b ± 
28.36

311.67a ± 
26.36

335.32b ± 
26.31

333.86b ± 
26.23

Humid 145.11a ± 
26.70

328.65a ± 
26.49

129.56a ± 
26.57

328.59a ± 
26.31

258.83a ± 
26.37

668.76a ± 
30.10

206.18a ± 
26.30

405.55ab ± 
26.34

487.85a ± 
26.25

a, b, c Column means with different superscripts differs significantly (p<0.05).

DISCUSSION

The observed convex age–intensity relationship or a Type 
III response in the intensity for strongyles and Trichuris 
sp. in the present study depicts that these two parasites are 
regulated by an acquired immune response. These findings 
are in concordance with earlier reports where the Type 
III convex-age intensity profile was observed in small 
ruminants (sheep and goat) (Sharma et al., 2009; Ayaz et 
al., 2013; Zvinorova et al., 2016). Noteworthy, Cattadori 
et al. (2007) postulated that if the host is infected by two 
parasites, the primary species immune-regulated and 
the second that can potentially reduce resistance to the 
primary, therefore the age–intensity profile of the primary 
species will be altered.

The strongyles are of high fecundity and transmission rate 
compared to other GIPs (Dabasa et al., 2017; Mpofu et 
al., 2020), consequently, it is no surprise that strongyles 
co-infection with either S. papillosus or Trichuris sp. leads 
to an overall higher strongyles infection intensities. The 
reason for higher strongyles and Trichuris sp. intensities 
in young goats with dual co-infection is evident. One 
possibility could be that such individuals are the most 
susceptible animals compared to other individuals and 
that in the presence strongyles, their immune response to 
both parasites is less efficient, attributed to immunological 
immaturity (Asanji and Williams, 1987; Mpofu et al., 
2020) and weaning stress (Verma et al., 2018). Notably, the 
poor host condition may facilitate infection with strongyles 
(Hansen and Perry, 1994; Zajac and Conboy, 2006; Dabasa 
et al., 2017). A further logical explanation might be the 

positive effect of substances produced by the strongyles 
which can positively or negatively induce changes in the 
gastric movement that can promote the passage of the 
Trichuris sp. to the small intestine, however, the evidence is 
insufficient to support such claims. A similar phenomenon 
had been observed when animals are co-infected with the 
Trichostrongylus retortaeformis and Graphidium strigosum, 
wherein it was postulated that the G. strigosum could 
promote the passage of T. retortaeformis into the small 
intestine (Cattadori et al., 2008).

The competition scenarios investigated in this paper should 
thus be common in nature. Our present results indicate 
that the competition between the species of GIPs is severe 
and therefore, has significant implications on numerous 
levels. Firstly, these findings reveal that the co-infection 
can modify the behaviour of the parasite community and 
its outcomes on the host. Secondly, the suppression may 
alter the epidemiology and/or fecundity patterns because 
it modifies the relative and absolute GIP load in the 
host. The elevated relative population size of the parasites 
within a host may increase the transmission risks, however, 
this phenomenon had been observed in different viruses 
affecting ruminants (Balmer et al., 2009). In the present 
study, co-infections seemed to enhance the heterogeneity 
of the GIPs between host and changed the level of parasite 
aggregation, however, a similar pattern was also observed 
in the rabbit population (Cattadori et al., 2007, 2008). The 
observed constant intensity infection by the S. papillosus in 
both single and co-infection status with any of the other 
GIPs indicates no discernible immune regulation. These 
differences could also be attributed to other developments, 
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which could produce such relationships, especially for S. 
papillosus. If the first parasite infection is not controlled 
by immune systems, then the age-intensity profile will not 
alter obviously, provided all other variables remain constant 
(Cattadori et al., 2007, 2008). 

The season, agro-ecological zone, age, and sex also 
played a significant role in determining the co-infection 
pattern, particularly for strongyles and likely their role 
was somewhat brought about by the immune response. 
The observed aggregation and intensity of strongyles, S. 
papillosus and Trichirus sp. in female host animals was 
higher in comparisons to male host animals when co-
infected with strongyles and S. papillosus, strongyles and 
Trichirus sp., but the results suggest that host characteristics 
and possible exposure shifts seem to be critical for to these 
parasites dynamics (Hudson et al., 2006). The observed 
aggregation and intensity of strongyles, S. papillosus, and 
Trichirus sp. depict that the presence of one parasite causes 
immuno-suppression (Behnke et al., 2001; Cox, 2001) 
during the winter season and in the female host animals 
than in the summer and male host animals. The immune-
suppressive effect of strongyles was evident, consequently 
resulting in an increased infection intensity in both sexes 
of goats, but reduced the aggregation of other GIPs in co-
infection, such that there were more goats diagnosed with 
S. papillosus and Trichirus sp. that also carried the strongyles. 
Brown et al. (2008) are of a view that the immune-
mediated competition benefits the pathogens that are 
able to escape the immunity by concealing from or being 
resistant to its effects. The findings that there is increased 
biasness in parasitism between sexes in co-infected goats 
in comparison with single species-infected goats postulates 
that female goats undergo hormonal immuno-suppressive 
and physiological changes that may in turn influence the 
GIP intensities (Sharma et al., 2009; Dabasa et al., 2017).

The production and/or an increase in molecules 
strengthening the immunity such as interleukins and 
antibodies may result if the parasites interfere with the 
host’s immune system (Vaumourin et al., 2015). Immunity 
developed against specific parasite can protect the host 
against other parasites which are antigenically similar to 
the primary parasite, this is referred to as cross-immunity 
(Vaumourin et al., 2015), which could be the case in the 
results of this study as the presence of one parasite increases 
the aggregation and intensity of the other parasite in co-
infection. This phenomenon had also been observed in 
rabbits infected with different GIP (Cattadori et al., 2007, 
2008). Noteworthy, resistance to one GIP species could 
be coupled with resistance to the second or even the third 
GIP species (Gruner et al., 2004; Behnke et al., 2006). 
How different mechanisms of within-host competition 
between concurring parasites sharing the same niche affect 
each other remains unclear (Alizon et al., 2013; Bashey, 

2015; Vaumourin et al., 2015).

CONCLUSION AND 
RECOMMENDATIONS

Host heterogeneities could be brought by the changes in 
host susceptibility and exposure to the GIPs. Multiple 
GIPs species infections resulted in the accumulation of 
GIP infection intensity in the host population but also 
resulted in variation in parasitism between goat ages and 
sexes. The need to discuss how different and co-occurring 
parasites affect the health of goats is becoming abundantly 
clear. Particularly, to such an extent, the broad approach is 
challenging, particularly acknowledging the difficulties of 
accurately interpret such interactions because the range of 
possible interactions increases with the number of GIPs 
in question. Such challenges could be overcome with the 
multi-disciplinary collaboration studies and considering 
that the progress of such a wide method might primarily 
require refined data.
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