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Introduction

The liver is responsible for lipid metabolism (Henao-
Mejia et al., 2012). The non-alcoholic fatty liver 

disease (NAFLD) develops by an accumulation of 
excrescent hepatic fat without the intake of excessive 
alcohol. Non-alcoholic steatohepatitis (NASH) is a severe 
form that can progress to cirrhosis and hepatocellular 
carcinoma (Rafiq et al., 2009; Machado and Diehl., 2016; 
Zhou et al., 2018). NAFLD is correlated with metabolic 
diseases such as obesity, insulin resistance, atherosclerosis, 
and cardiovascular disease (Wójcik-Cichy et al., 2018). 

Feeding on the high-fat diet (HFD) results in hepatic redox 
imbalance mediating lipid peroxidation that promotes the 
progression of NAFLD (Rolo et al., 2012; Kakimoto and 
Kowaltowski, 2016). 

Recently, herbal medicine has been found to prevent 
and treat many diseases (Karam et al., 2017). Garden 
cress (Lepidium Sativum L.) belongs to the Brassicaceae 
family and is native to Egypt and West Asia. It possesses 
proteins, vitamins, carbohydrates, omega-3 fatty acids, 
iron, phytochemicals, and flavonoids (Nehdi et al., 2012; 
Emhofer et al., 2019). Garden cress (GC) seeds extract 
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possesses  antioxidant, hypoglycemic, hepatoprotective, 
cardioprotective, antidiarrheal, and  anticancer activity 
(Al-Sheddi et al., 2016; Raish et al., 2016; Ullah et al., 
2019). Feeding GC seed oil supplementation for 60 
days than natural oil in rats, Umesha and Naidu (2015) 
reported higher levels of hepatic tocopherols, catalase, 
and glutathione peroxidase activity. Following oral 
supplementation of 20%GC methanol seed extract (w/v) 
for 28 days in streptozotocin-induced diabetic rats, Qusti 
et al. (2016) observed an increased renal and pancreatic 
activity of SOD, CAT, GSH, and a decreased MDA 
contents. A pre-exposure of GC seeds extract (25 µg/
ml) showed cytoprotective effects against H2O2-induced 
toxicity in HepG2 (Al-Sheddi et al., 2016). Another 
study revealed that pretreatment of GC seeds extract 
(150 and 300 mg/kg) down-regulates TNF-α, IL-6, and 
IL-10, MPO, caspase3 activity, and up-regulates BCl2 
expression in D-galactosamine/ lipopolysaccharideinduced 
hepatotoxicity in rats (Raish et al., 2016). Though much 
studied, there is a paucity of research on the free radical 
scavenging and antioxidant properties of ethanolic 
extract of garden cress seeds (EEGS). Therefore, while 
assessing hepatic oxidative stress status, and expression 
of HMGCR and VEGF mRNA, this study explored 
the hepato-ameliorative effect of EEGS in rat NAFLD 
model.The phytochemical screening of EEGS was also 
carried out to determine the contents of total phenolic, 
flavonoids, vitamin C, and elucidate DPPH radical 
scavenging activity.

Materials and Methods

Rats model
Forty adult male albino rats (120-130gm, six weeks old) 
were obtained from The Laboratory Animal House of 
National Research Center, Dokki, Giza, Egypt. The rats 
were housed in the research building of the Faculty of 
Veterinary Medicine, Suez Canal University. Rats were 
fed standard pellet animal diet and water ad libitum. The 
whole experiment involving animal-related activities were 
done in accordance with the “Guide for the Care and Use 
of Laboratory Animals». NAFLD model was established 
by HFD that consisted of standard diet (355 gm/kg), 
lard	 (310 gm/kg), casein (250 gm/kg), cholesterol (10 
gm/kg), corn oil (10 gm/kg), DL-Methionine (3 gm/kg), 
vitamins and mineral mix (60 gm/kg), sodium chloride 
mix (1 gm/kg), and yeast powder (1 gm/kg) (Srinivasan 
et al., 2005).

Plants
Garden cress seeds were obtained from Horticulture 
Department, Agricultural Research Center, Dokki, Giza, 
Egypt. Plants were identified by the Faculty of Pharmacy, 
Department of Pharmacognosy, Cairo University, Egypt.

Preparation of ethanolic extract of garden 
cress seeds (EEGS)
The GC seeds (500 g) were washed by distilled water, dried 
using hot air oven (40–60 oC), and ground by an electric 
grinder. The ground seeds were soaked in 96% ethanol for 
24 hr, and filtered. Ethanol was added for another 12 hours 
and using sterile filter paper, filtered the extract. The filtrate 
was dried in an oven at 50ºC and stored at 4°C until used 
(Samson et al., 2012).

Experimental regimens
Rats were divided randomly into four groups, (n=10 in each 
group). Control group (group 1) rats were fed standard 
pelleted diet and water. After six weeks of the experiment, 
rats were provided 1ml distilled water using gastric gavage 
daily till 12 weeks.HFD group (group 2) rats offered a 
high-fat diet (HFD) for 12 weeks. After six weeks of the 
experiment, rats were provided 1ml distilled water using 
gastric gavage daily till 12 weeks. HFD+EEGS group 
(group 3) rats were fed HFD for 12 weeks. After six weeks 
from the beginning of the experiment, rats were offered 
EEGS (400mg/kg/day) using gastric gavage until the end 
of the experiment (Kamani  et al., 2017). EEGS (group 
4) rats were fed the standard pelleted diet for 12 weeks. 
After six weeks from the beginning of the experiment, rats 
received EEGS (400mg /kg/day) using gastric gavage until 
the end of the experiment.

Handling of blood and tissue samples
After 12 weeks, rats were fasted overnight, and euthanized. 
Blood samples were centrifuged for serum separation. 
Livers samples were dissected and divided into three parts. 
The first portion homogenized in phosphate-buffered 
saline (PH=7.4), centrifuged at 3000xg for 15 minutes, and 
the supernatant was collected for oxidative stress markers 
analysis. The second part was fixed in 10% phosphate-
buffered formalin for histopathological examination as per 
the method described previously (Bancroft and Gamble, 
2008). The third portion was kept at -80°C for HMGCR 
and VEGF gene expression analysis.

Body weight gain 
The weight of each rat was recorded weekly, and weight 
gain was assessed following previous guidelines (Feldman-
Winter et al., 2018).

Measurement of serum liver enzyme activity and 
lipid profile 
Commercially available kits were used to determine 
Alanine Aminotransferase (ALT) activity, Cat. No. 
TR18503, Thermo Fisher Scientific, USA, Aspartate 
Aminotransferase (AST) Cat. No. TR70121, Thermo 
Fisher Scientific, USA), total cholesterol (TC), Cat. 
No.1105, Vitro Science, Egypt), triacylglycerol (TAG) Cat. 
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No. 702040050, Vitro Science, Egypt, and high density 
lipoprotein- cholesterol (HDL-C) Cat. No. 282000005, 
Vitro Science, Egypt following manufacturer guidelines. 
The concentration of low density lipoprotein- cholesterol 
(LDL-C) (Davidson and Rosenson, 2009) and very low 
density lipoprotein- cholesterol (VLDL- C) (Zhao et al., 
2017) was followed the previously described protocols. 

Assay of oxidative stress markers
Serum nitric oxide (NO) concentration was determined 
using Griess’s reagent (Sigma-Aldrich, Steinheim, 
Germany) as per the method described previously 
( Jabłonska et al., 2007). Commercial ELISA kits were used 
to assess the concentration of reduced hepatic glutathione 
(GSH) (GSH ELISA kit, Cat. No. E02G0367, Blue Gene 
Biotech, China), superoxide dismutase (SOD) (SOD 
ELISA kit, Cat. No. MBS036924, MyBioSource, USA), 
catalase (CAT) (CAT ELISA kit, Cat. No. E0242r, ELAab, 
China) and MDA (MDA ELISA kit, Cat. No. E0156Ra, 
Bioassay technology laboratory, China) following the 
guidelines of the manufacturer.

Real-time expression of HMGCR and VEGF 
mRNAs
Liver total RNAs were extracted (RNeasy Mini Kit, 
Qiagen) according to the manufacture protocol. Total RNA 
was converted to cDNA (RevertAid Reverse Transcriptase 
(Thermo Fisher, Catalog number: EP0441). Quantification 
of expressed 3-hydroxy-3-methylglutaryl-coenzyme A 
reductase (HMGCR) (Morral et al., 2007) and vascular 
endothelial growth factor (VEGF) (Peng et al., 2014) was 
conducted using primers, probes (Metabion, Germany) 
(Table 1) and Quantitect SYBR green PCR kit. The PCR 
was performed on the Stratagene MX3005P instrument 
(Applied Biosystems). Thermal conditions were 94 °C for 
15 min, followed by 40 cycles of each of 94 °C for 15 s and 
60 °C for 30 s. The target was normalized to an endogenous 
reference (β-actin) and using 2−ΔCt in the strata gene 
MX3005P software, quantified (Bahr et al., 2019a).

Assessment of phytochemical properties of 
EEGS
The value of total phenolics in EEGS was evaluated by Folin-
Ciocalteau protocol and described as gallic acid equivalents 
(GAE/g) extract according to a previous method (Dandge et 
al., 2011). The amount of total flavonoid was measured and 
described as quercetin equivalents (mg QE /g) (Kumar and 
Roy., 2018). Antioxidant activity was detected by DPPH 
(2,2-diphenyl-2-picryl hydroxyl free radical) assay, and the 
IC50 value was calculated (Norshazila et al., 2010).

HPLC analysis for identification of total 
phenolic, flavonoids and vitamin C content
A C18 column was used for screening and separation of 

compound constituents in a volume of 10ul in HPLC 
(Agilent 1260 HPLC series. The mobile phase contained 
water (A) and 0.02% tri-floro-acetic acid in acetonitrile 
(B) the rate of 1 ml/min. At wavelength (280 nm) and 
temperature (35°C), rate of flow was adjusted as 0 min 
(80% A), 0–5 min (80% A), 5-8 min (40% A), 8-12 
min (50% A), 12-14 min (80% A), and 14-16 min (80% 
A). checked Phenolic, flavonoids, and vitamin C were 
detected compared to retention times against standards, 
and the contents were measured using the area below 
standards peak (Croci et al., 2009). For the identification 
of phenolic compounds, standards as gallic acid, caffeic 
acid, coumaric, syringic acid, vanillin, cinnamic acid and 
salicylic acid, ferulic, and chlorogenic acid were employed. 
For identification of flavonoids, standard as catechins, 
kaempferol, rutin, rosmarinic acid, hesperetin, quercitrin, 
apigenin, and quercetin were used. Vitamin C standard 
was applied for the detection of its concentration.

Statistical analysis 
Values were statistically analyzed via SPSS, version 20. Data 
was set as mean± SD. The comparison was made through 
a One-way Analysis of Variance (ANOVA) followed by 
Duncan Multiple Range Test. The significance was taken 
at P<0.05.

Results

Effect of EEGS on weight gain in HFD- 
treated groups
The body weight gain of HFD-fed rats was more than the 
control group. Daily administration of 400mg/kg EEGS 
for six weeks counteracted HFD- induced obesity. No 
difference was observed between EEGS and the control 
group (Table 2). 

Effect of EEGS on serum liver enzymes in HFD- 
treated groups
We observed a higher serum activity of ALT and AST 
in HFD- treated rats than the control group. On the 
other hand, these biologic markers decreased significantly 
following EEGS treatment. However, no differences were 
observed between EEGS and the control group (Table 2). 

Effect of EEGS on lipid profile in HFD- 
treated groups
Compared to the control group, Consumption of high-fat 
diet caused hyperlipidemia, and this can clearly evidence 
by a significant increase in serum TC, TAG, and LDL-C, 
VLDL-C levels. Contrary to this, the administration of 
the EEGS prevented hyperlipidemia compared to with the 
HFD- treated rats. No difference was observed between 
EEGS and the control group (Table 2).
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Table 1: Primers Sequences for HMGCR and VEGF.
Reference Primer sequence (5'-3') Gene
Banni et al., 2010 TCCTCCTGAGCGCAAGTACTCT Rat ß-actin

GCTCAGTAACAGTCCGCCTAGAA
Peng et al., 2014 GGCTCTGAAACCATGAACTTTCT VEGF

GCAGTAGCTGCGCTGGTAGAC
Morral et al., 2007  CAGCACTGTCGTCATTCATTTCC HMG COA 

reductase ACATTCCACCAGAGCGTCAAGG

Table 2: The effect of EEGS on weight gain, serum liver enzymes, and lipid profile in HFD- treated groups.
EEGS HFD+EEGS HFD Control Parameters
122.78±8.16c 172.51 ±5.79b 220.32±6.65a 125.94±10.06c Weight gain(gm)
91.32±6.14c 116.77 ±0.80b 177.20±4.84a 94.79±3.77c TC (mg/dl)
73.98±5.02c 82.81±1.22b 171.98 ±6.47a 74.89 ±4.00c TAG (mg/dl)
40.62±1.89a 31.83±1.45b 21.16±1.32c 41.15±1.72a HDL-C (mg/dl)
36.01±3.36c 68.38±1.68b 121.71 ±3.61a 38.66±1.36c LDL-C (mg/dl)
14.68±1.14b 16.55±0.24b 34.33 ±1.35a 14.97±.80b VLDL-C (mg/dl)
26.80±1.82c 32.86±4.37b 51.83±1.37a 26.63±1.34c ALT (IU /L)
41.13±0.97c 50.46±1.62b 68.22±1.42a 41.40±1.79c AST (IU /L)

Values represent as (Mean ± S.D). Means with different superscript letters within the same raw are significantly different at P<0.05. 
HFD: high fat diet, EEGS: ethanol extract of garden cress seeds. 

Table 3: The effect of EEGS on oxidative stress markers in HFD- treated groups.
EEGS HFD+EEGS HFD Control Parameter
42.95±0.38c 48.25±0.32b 56.47±0.48a 43.15±0.40c NO (µmol/L)
42.59±1.64a 38.18±1.77a 29.64±0.91b 41.58±2.48a GSH content (Pg/g liver)
44.59± 0.38a 38.18±1.23b 29.64±1.48c 46.71±0.78a SOD activity (U/g liver)
59.91±0.32a 58.07±0.40a 41.04±0.38b 60.27±0.27a CAT activity (U/g liver)
19.78±0.17c 30.26±0.17b 45.04±0.28a 19.17±0.13c MDA content (mmol /g liver)

Values represent as (Mean ± S.D). Means with different superscript letters within the same raw are significantly different at P<0.05. 
HFD: high fat diet, EEGS: ethanol extract of garden cress seeds. 

Table 4: Determination of antioxidant capacity, total phenolic, and flavonoids concentration of EEGS.
DPPH radical scavenging activity (μg/ml) Total flavonoids (mg QE /g) Total phenolic (mg GAE /g)
176.18± 0.63 4.79 ± 0.24 11.03 ± 0.75

Effect of EEGS on oxidative stress markers in 
HFD- treated groups
A higher serum nitric oxide level and lower hepatic GSH 
level, as well as activities of SOD and CAT were observed 
in HFD fed rats than control (Table 3). The EEGS 
administration exhibited antioxidant activity. No difference 
was observed between EEGS and the control group.

Effect of EEGS on the expression of HMGCR 
and VEGF in HFD- treated groups
Real-time PCR analysis demonstrated the upregulation of 
HMGCR (Figure 1A) and VEGF (Figure 1B) expression 
in HFD-fed rats compared to control. Contrary to this, 
following HFD feeding, EEGS administration resulted 
in lower expression of HMGCR and VEGF than HFD-

treated rats. Interestingly, oral administration of 400mg/
kg EEGS alone to rats for six weeks also revealed a lower 
HMGCR and VEGF expression than the control group.

Histological analysis of liver
The liver of the HFD group displayed a mild proliferation 
of bile duct, congestion with pyknotic hepatocytes, 
infiltration of mononuclear inflammatory cell, fibrosis 
(Figure 3C), and biliary hyperplasia (Figure 3D) were 
noted compared to control rats. Hydropic degeneration and 
fatty change with fatty cyst (Figure 3E), and progressive 
steatosis were also recorded (Figure 3F). Following HFD 
feeding, rats treated with EEGS exhibited retained hepatic 
lobules integrity with randomly dispensed apoptotic cells 
(Figure 3G).



NE  US
Academic                                      Publishers

Advances in Animal and Veterinary Sciences

2020 | Volume 8 | Special Issue 1 | Page 5

Figure 1: The effect of EEGS on hepatic mRNA expression 
of HMGCR and VEGF in HFD- treated groups.
Values represent as (Mean±S.D). Means with different 
superscript letters within the same raw are significantly different 
at P<0.05. HFD: high fat diet, EEGS: ethanol extract of 
garden cress seeds. (A) HMGCR: 3-hydroxy-3-methylglutaryl-
coenzyme A reductase. (B) VEGF: vascular endothelial growth 
factor. Fold-change for HMGCR and VEGF gene expression 
was normalized versus expression of β-actin.

Figure 2: Photomicrographs of hepatic sections of rats 
from experimental groups.
Control group: liver section in (A), (B) viewing normal 
histomorphological structures. HFD- group: liver section in 
(C) showing Portal fibrosis (arrow), (D) biliary hyperplasia 
(arrows), (E) hydropic degeneration and fatty change 
(Arrows) with fatty cyst (star), (F) extensive fatty replacement 
of hepatic parenchyma (arrows). HFD+EEGS group: liver 
section in (G) evoking normal hepatic parenchyma in line with 
randomly dispensed apoptotic cells (arrow heads).

Determination of total phenolic, flavonoids, 
and DPPH radical scavenging impact of EEGS.
Table 4 demonstrate total flavonoids content as 4.79 ± 0.24 
mg QE mg/ g. Total phenolic content was found to be 
11.03 ± 0.75 mg GAE /g. Antioxidant activity, measured 
by DPPH assay indicated a lower IC50 (176.18± 0.63 μg/
ml), which corresponds to the higher antioxidant capacity 
of EEGS.

Figure 3: HPLC analysis for identification of total 
phenolic, flavonoids and vitamin C content of EEGS.
(A): Values represent total phenolic compound (A- gallic acid, 
B- vanillin, C- cinnamic acid, D- caffeic acid, E- p-coumaric 
acid, F- ferulic acid, G- chlorogenic acid, H- salicylic acid, I- 
syringic acid). (B): Values represent total flavonoids compound 
(A-Catechins, B- kaempferol, C-rutin, D- rosmarinic acid, 
E- Quercitrin, F- hesperetin, G- apigenin, H- quercetin). (C): 
Values represent vitamin C content.

HPLC analysis for identification of EEGS total 
phenolic and flavonoids and vitamin C level
HPLC analysis for EEGS phenolic compound yielded 
a higher value for caffeic, followed by gallic, p-coumaric, 
ferulic, syringic, cinnamic, chlorogenic, salicylic acid, and 
vanillin orderly (Table 5, Figure 3A). Identification of total 
flavonoids content revealed the presence of a higher value of 
rutin, followed by catechins, quercetin, quercitrin, rosmarinic 
acid, kaempferol, apigenin, and hesperetin (Table 5, Figure 
3B). Vitamin C content is represented in (Table 5, Figure 3C).

Discussion 

In this study, HFD for 12 weeks induced- hyperlipidemia, 
obesity, and increased body weight. These observations are 
in line with Ito et al. (2007) who reported hyperlipidemia, 
obesity, and insulin resistance after the administration 
of HFD for 10 weeks. Similarly, Bambha et al. (2014) 
demonstrated that HFD- induced increment in body 
weight, insulin resistance, inflammatory response, and 
oxidative burden. Some studies reported activation of 
PPARγ following HFD administration, resulting in 
increased food intake and adipose tissue accumulation 
(Larsen et al., 2003; Sikder et al., 2018).



NE  US
Academic                                      Publishers

Advances in Animal and Veterinary Sciences

2020 | Volume 8 | Special Issue 1 | Page 6

Table 5: HPLC analysis of total phenolic, flavonoids, and vitamin C contents (μg/ml) of EEGS.
Vanillin Salicyl-

ic acid
Chloro-genic 
acid

Cinnamic 
acid

Syringic acid Ferulic acid P-Coumaric 
acid

Gallic acid Caffeic 
acid

Total phe-
nolic 

5.71 6.09 26.38 28.73 29.55 34.12 36.52 36.94 39.64
Hesperetin Apigenin Kaempferol Rosmarinic acid Quercitrin Quercetin Catechins Rutin Total flavo-

noid1.47 1.53 1.63 1.92 2.24 2.58 3.26 3.84
1.265 Vitamin C 

Feeding HFD for 12 weeks of the damaged liver in this 
study, and this can clearly be evidenced by a higher serum 
ALT and AST activity. This is not surprising observation 
because similar consistency in results has been observed 
previously by others (Bugianesi et al., 2005; Yadav et al., 
2009). There are studies that evidenced HFD induced 
increment in hepatic TAG, FFA accumulation, fatty acid 
synthesis, and oxidation. Such variation in the normal 
physiological processes resulted in hepatic oxidative 
damage, NAFLD, and NASH leading to enzyme leakage 
in the blood (Rolo et al., 2012; Than and Newsome, 2015). 
Similar to our data, Sanches et al. (2015) observed an 
occurrence of NASH after 12 weeks by feeding on HFD. 
Administration of EEGS for six weeks, following feeding 
on HFD, restored liver enzyme activity. This supports 
previous research observations (Althnaian., 2014) where 
hepatoprotective potency of GC was observed following 
treatment with 3g and 6g per kg diet of rats. These rates 
were fed high cholesterol diet, and the addition of GC in 
the feed resulted in decreased ALT and AST activity.

HFD-induced hyperlipidemia was evidenced by the rise in 
TAG, LDL-C, VLDL-C, TC, and low HDL-C content 
along with an upregulation in the rate of expression of 
HMGCR in the current study. These observations are 
consistent with those reported previously by others ( Jiang 
et al., 2018; Feng et al., 2019). Hypercholesterolemia may 
be caused by an increased uptake of exogenous cholesterol 
and increased esterification of free fatty acids. HMGCR is 
the regulator for cholesterol synthesis; however, similar to 
previous studies, we observed an upregulation in the rate 
of expression of this particular gene upon administration 
of HFD in rats ( Jiang et al., 2018; Naik et al., 2018). 
Hyper-triacylglyceridemia may be due to inhibition 
of 7a-hydroxylase activity (Beigneux et al., 2002). A 
reduction in HDL-C level is attributed to a low lecithin-
cholesterol acyltransferase (LCAT) activity that facilitates 
cholesterol uptake from peripheral tissues to HDL in the 
liver (Kunnen and Van Eck, 2012).

In the current study, HFD- induced hyperlipidemia was 
significantly reduced by EEGS, which may be related to 
increased activity of LCAT enhancing HDL-C formation 
(Shukla et al., 2015). Further to this, quercetin is one of 
the flavonoids that downregulate lipogenic genes in mice 
and in vitro models of NAFLD (Pisonero-Vaquero et al., 

2015; Wang et al., 2016). Rutin has also been reported to 
inhibit lipogenesis and facilitate fatty acid metabolism (Liu 
et al., 2017). With these observations, we ascertain that 
EEGS-induced hypolipidemic effect may be attributed to 
flavonoids and phenols content, and this is in agreement 
with the previous study (Subramania et al., 2017).

Our data proposed that, compared to control, HFD induce 
hepatic oxidative burden, and this can be evidenced by a 
decline in hepatic GSH concentration, SOD, CAT activity 
and an increase in MDA and serum nitric oxide content. 
This corresponds to previous observations reported by 
others (Bambha et al., 2014; Than and Newsome, 2015). 
Glutathione peroxidase reduced hydrogen peroxide and 
protected from the lipid peroxidation process in the 
presence of glutathione (Lubos et al., 2011). Manganese-
dependent superoxide dismutase prevented mitochondrial 
oxidative stress in the liver (Mansouri et al., 2010). 
Fatty acid oxidation is a vital source for ROS generation 
in fatty livers that attack polyunsaturated fatty acids 
resulting in lipid peroxidation (Valenzuela and Videla, 
2011). Cholesterol is auto-oxidized to oxysterols- exerted 
apoptosis in NASH (Subramanian et al., 2011). Following 
high-fat diet feeding, a higher activity of hepatic iNOS are 
reported that stimulate higher production of hepatic NO 
(Forstermann and Sessa, 2012; Castiglione et al., 2018; 
Mohamaden et al., 2019). Hepatic oxidative stress has 
been associated with a reduced antioxidant capacity (Bahr 
et al., 2019b). Therefore, GSH concentration, SOD, and 
CAT are believed to scavenge ROS along with MDA and 
nitric oxide production.

Our data showed that administration of 400mg/kg EEGS 
along with HFD for six weeks evoked antioxidant activity, 
and this was indicated by the upregulation of hepatic 
SOD, CAT activity and GSH concentration along with a 
significant decrease in MDA and nitric oxide content. These 
findings are consistent with those reported previously by 
others (Umesha and Naidu, 2015; Questi et al., 2016; Al-
Sheddi et al., 2016). Added to this, phenolic compounds 
and flavonoids possess hydroxyl groups that contribute to 
their antioxidant potential (Bendary et al., 2013; Panche 
et al., 2016). Gallic acid is one of a phenolic compound 
that has been reported to improve liver GSH level, GSH 
reductase, GSH peroxidase, and GSH S- transferase 
activity, thereby preventing NAFLD and NASH in HFD-
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fed rats (Hsu and Yen., 2007). Compared to vitamin 
C supplements, deficiency of Vitamin C for 57 days in 
gulo−/−  mice induced increase in the protein carbonyls, 
and a decrease in catalase expression (Amano et al., 2013). 
Vitamin C scavenge free radicals and facilitate reversion 
of hyperlipidemia, whereas its deficiency can develop 
NAFLD (Ipsen et al., 2014). Gao et al. (2013) reported 
anti-inflammatory and antioxidant properties of rutin 
in the HFD-induced obesity model. Hydrogen peroxide 
produces hydroxyl radical-induced lipid peroxidation 
(Saed-Moucheshi et al., 2014). Hence, the prevention of 
H2O2 production by EEGS antioxidants highlights its 
biological importance that was further confirmed with our 
DPPH assay.

The upregulation of vascular endothelial growth factor 
A (VEGF) in our study is in agreement with previous 
literature (Forstermann and Sessa, 2012; Castiglione 
et al., 2018). Coulon et al. (2012) explained the role of 
VEGF in angiogenesis and progression of NAFLD. Kim 
et al. (2010) proposed angiogenesis dependent adipose 
tissue growth that requires VEGF. The upregulation 
of VEGF expression was noted in hepatic fibrosis in 
clinical (Paternostro et al., 2010) and experimental studies 
(Corpechot et al., 2002; Huang et al., 2013; Lin et al., 
2014). EEGS treatment in HFD-treated rats exhibited 
significant suppression in expression of VEGF. This is 
consistent with previous observations Surapaneni et al. 
(2015) who proved that quercetin downregulates VEGF 
expression more than hydroxy citric acid and pioglitazone 
in NASH rats model. Domitrović et al. (2013) revealed the 
antioxidant, and antifibrotic prospect of rosmarinic acid in 
acute hepatic intoxication. Taking altogether, the findings 
conferred thesafe hepato-protective dose of EEGS along 
with its antioxidant potential in vivo, and in vitro.

Conclusion

The study concludes that daily administration of 
EEGS 400mg/kg b.w for six weeks is safe and possess 
hepatoprotective, antioxidant, hypolipidemic, anti-obesity, 
anti-angiogenic, and anti- steatosis effects. Different 
constituents of EEGS such as phenolic, flavonoid, vitamin 
C content have antioxidant properties that do facilitate 
encountering the negative consequences of HFD-induced 
NAFLD.
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