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Introduction

Aquaculture farmers are concerned with achieving 
the highest growth rates regardless of the condition 

of water quality; therefore, the farms set up in areas with 

unsuitable water parameters have been under-performing 
in production and are thus unsustainable (Stewart et al., 
2013). Furthermore, anthropogenic actions have led to the 
degradation of freshwater habitats and the concomitant 
depletion of fish populations (Closs et al., 2015; Gordon et 
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study analyzes the paddlefish’ biological and physical Caspian environmental data using fuzzy logic control methodol-
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this hypothesis, there was one governate station (the Caspian Fisheries Research Institute), including twelve earthen 
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output data (metabolic rate), influencing the selected factors (temperature, dissolved oxygen, pH and oxygen uptake) 
involved in the system. Through prediction and simulation, each input factor was determined during the breeding 
season (seven months). Water quality parameters involved in the variation in the paddlefish rearing conditions were 
classified into four groups, including temperature, pH and dissolved oxygen, along with oxygen consumption. For each 
rearing condition, a separate fuzzy inference system was defined and the output of each fuzzy system was named F1, 
F2, F3, F4 and F5. Finally, F1 and F2 were identified as the inputs to a fuzzy model to evaluate the relation between 
the metabolic rate index’s and environmental factors. The results indicated that the decline in the paddlefish metabolic 
rate rearing index was correlated with the water temperature and dissolved oxygen percentage during the breeding 
season. In conclusion, improving oxygen flowing and optimum water temperature could reduce environmental stress 
and improve paddlefish production in this system during the breeding season. 
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al., 2018). Recently, the Food and Agriculture Organiza-
tion of the United Nations (FAO) revealed that paddlefish 
breeding stocks’ exploitation is one of the most discussed 
issues in terms of threats to paddlefish cultivation, as de-
scribed by Holčík (2006). In the last century, the promotion 
of paddlefish farming through high-quality roe production 
is a new objective in several Eastern European countries 
(Hanel et al., 2011). Paddlefish (Polyodon spathula) was 
first introduced in the Russian Federation (formerly the 
Soviet Union) in 1974, primarily because of its rearing po-
tential in ponds with high organic fertility and within large 
reservoirs in the South ( Jarić et al., 2019).

The paddlefish is mainly farmed to produce roe in the Rus-
sian Volga River, especially in the Krasnodar, Volga–Cas-
pian basin and Saratov regions (Lobchenko et al., 2002; 
Kottelat and Freyhof, 2007; Ermolin and Svolkinas, 2018). 
However, aquaculture activities are concentrated in Astra-
khan, which is under the Caspian Fisheries Research In-
stitute (CaspNIRKh) (Elvira, 2001; Lenhardt et al., 2006). 
Increasing demands emanating from the EU markets for 
paddlefish caviar has stimulated farming (Mims and Shel-
ton, 2015).

The Russian Federation survey indicated that paddlefish 
roe production is expected to remain stable, with an in-
creasing annual potential of approximately 5% –10% ( Jarić 
et al., 2019). Fish farming ecosystems are an assemblage 
of controlled parameters aiming at providing the most 
favorable conditions for culture, thus seeking at best and 
sustainable fish growth. Among these parameters, aquatic 
stressors can be identified, resulting from environmental 
factors and internal, biological stressors, and specifically 
on metabolic rate (Closs et al., 2015; Côté et al., 2016). 
Major environmental stressors influence the performance 
and metabolic rates of cultured paddlefish and other fresh-
water fish species (Naiel et al 2020a; Naiel et al 2020c). 
These factors are probably determined and driven by events 
caused by the interactions among internal and external en-
vironmental factors in an aquatic ecosystem, including dif-
ferent types of biological stressors, e.g., metabolic rate as 
described by Hubenova et al. (2007). The physical param-
eters (i.e., temperature, dissolved oxygen, pH) considering 
as agents of the farming medium that need to be moni-
tored, and its turn into stressors once the agent moves into 
a range that causes harm to the fish performance (Khafaga 
et al., 2020; Naiel et al., 2020b). Therefore, the manage-
ment of the various environmental parameters in which 
the fish is reared are performing via two steps: The first 
step is to understand what is the range (optimum range) of 
each parameter in which the fish survive best; followed by 
the interactions between these parameters (Vasilyeva and 
Elnakeeb, 2019). The most important factors, their fluctua-
tions with time, need to be monitored, by adequate means, 

by manual data collection or automated ones and fed into 
a control system to advise on corrective action to be taken 
(Mazur and Curtis, 2006).

Models’ construction takes in the parameters, their range 
of variation, the interactions between parameters, and 
their effects on fish’s vital performances (growth, feeding 
rate, behavior, etc.) are of great value. (Lange et al., 2018). 
Also, information on the optimum range of the physical 
and chemical parameters to paddlefish culturing is scarce 
and inconsistent in the Russian Federation and requires a 
researcher’s insights and efforts. Using fuzzy logic control-
ler modeling with the relevance of controlling systems for 
analyzing biological data is a worth concept (Navas et al., 
2011). In an attempt to reduce overall stressor effects on 
paddlefish behaviour in traditional farming systems, one of 
16 environmental models was considered by the European 
Commission’s Ecosystem Approach to Sustainable Aqua-
culture (Brigolin et al., 2008).

Moreover, a few studies have focused on tracing biolog-
ical modeling patterns and development to simulate and 
predict environmental stress. Besides, rare studies have 
focused on controlling pressure factors in open ecosys-
tems because of some fish behavior’s unpredictability in 
response to environmental fluctuations in coastal areas 
(Mimura 2013). Fuzzy logic formalism is appropriate to 
address complex ecological issues’ volatility and rational-
ity (Alamdar et al., 2010). The previous literature results 
specified that the fuzzy inference system ability fastly and 
correctly predicts the relationship between water quality 
parameters as stress factors and fish production. The vi-
tal goal of organic aquaculture producers was to prevent 
the harmful effects of unsuitable environmental effects on 
fish performance (Luna et al., 2019). Hence, water quality 
parameters in any aquaculture system indicate the aquatic 
rearing condition (Ayyat et al., 2020; Naiel et al., 2020b). 
Water quality alertness can afford awareness to avoid pos-
sible risks, such as high mortality rates, controlling diseas-
es, and regulating the production situation without any ad-
ditional cost. The present study aimed to develop a rearing 
index for paddlefish based on the effect of the water quality 
essential parameters, including temperature, pH, dissolved 
oxygen, consuming oxygen, and the relation between these 
parameters and metabolic status based on a fuzzy inference 
system. Developing such a vital and widespread rearing in-
dex for improving water quality awareness is respected as 
a novelty in organic aquaculture, directly helping farmers 
manage and control aquatic systems successfully. Therefore, 
they can avoid high losses and treatment costs through 
timely actions. 



NE  US
Academic                                      Publishers

Advances in Animal and Veterinary Sciences

June 2021 | Volume 9 | Issue 6 | Page 775

RESULTS and DISCUSSION

Metabolic Rate Indicators
Paddlefish metabolic rates were strongly affected by varia-
bility in water variables due to the geographic area (Mims 
and Shelton, 2015; Vasilyeva and Elnakeeb, 2019), espe-
cially at the beginning and end of the growing season (i.e., 
April and October, respectively) west of the Astrakhan 
region. Environmental temperature and feeding rate are 
essential metabolic regulating features (Patterson et al., 
2013). Comparing the metabolic rate of paddlefish over 
seven months provides us with comprehensive knowledge 
of growth performance during the rearing period (Closs 
et al., 2015; Côté et al., 2016). It is highly facilitated by 
using regression equation for consumed oxygen, which has 
been dependent on body weight, water temperature, and 
dissolved oxygen.

Regression Equation for Oxygen Uptake
In paddlefish, such as all poikilothermic organisms, metab-
olism is affected by temperature (Katunin, 1986; Huben-
ova et al., 2007). However, oxygen uptake (mg/h/kg) and 
dissolved oxygen (DO, ppm, mg/L) are closely attached to 
the temperature effect, but not only. It is also dependent on 
many other factors, inter alias the release of oxygen in wa-
ter, thus directly affecting growth. Smaller paddlefish have 
a higher metabolic rate than larger paddlefish (Patterson et 
al., 2013). The regression equation for oxygen uptake be-
tween 10 and 29°C is as follows:

Y= 7.66 (t) 0.979 × (M) 0.918

Oxygen uptake was calculated for each temperature (t) and 
Weight gain (M); it is calculated by the difference between 
the initial (Wi) and the final body weight (Wf) to prepare 
the fourth stress factor for introduction into the statistical 
analysis and modeling system.

Statistical Analysis
In line with previous results by Mims and Shelton, (2015); 
Patterson et al. (2013), statistical analysis was performed 
for temperature, DO, pH, and oxygen uptake to express 
the metabolic rate output as a farming season (7 months). 
In this context, a statistical model was constructed to ana-
lyze the variance, correlation, and regression between the 
four variables during the breeding season. Data were taken 
every two days, summarized and prepared to be entered 
into the model. 

Standardized Coefficients and Regression 
Coefficient
ANOVA was tested with a confidence interval (95%) and 
tolerance (0.0001) using the least-square means. After 
calculating the extracted value of the fuzzy logic control 
output’s metabolic rates, the metabolic rate dataset was in-

troduced as a 5th variable to identify an interaction between 
all stress factors over the breeding season months. 

Figure 1: Map of Scientific and Experimental Base of 
(Caspnirkh) Fsbb – (Bios) Center. Astrakhan, Southern 
Russian Federation. Http://Www.kaspnirh.ru

Figure 2: Image of the correlation matrix.

Figure 3: Standardized coefficients (Metabolic rate & stress 
factors, variables) for season period-months expressed as a 
change in the degrees of standard deviations between four 
variables and the predictor (Pred, seasonal period-months 
to metabolic rates) with a confidence interval (95%).

http://www.kaspnirh.ru/
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Table 1: The ranges of the water physical (temperature, dissolved oxygen, pH) and chemical (Oxygen uptake) parameters, 
and desirable and acceptable scales on the paddlefish weight gain.
Parameters (Dataset) Desirable Ranges Acceptable Ranges
Temp. (°C) 22±0.2 - 28±0.5 31.5±0.1- 29.5±0.2
DO (mg/L). 5.2 – 10.1 4.15 - 10.1
pH. 7.7 – 8.8 5.7- 9.4
Oxygen uptake (mg/h/Kg). 80 - 200 47.1 - 119.5
WG (g)
IW (g) 300 --
FW (g) -- 1700

Temp, temperature; DO, Dissolved oxygen; WG, Weight gain (g) = IW-FW; while, IW, Initial Weight; FW, Final Weight.

Table 2: The effects of water quality measurements (temperature, DO, pH, and oxygen uptake) on the cultured paddlefish 
oxygen uptake (%) and metabolic rate (M.R; %) during farming season (7 months).

Measurement Breeding season (month) SD R² P value
April May June July August September October

Temp. (ºC) 19.4bc 22.2abc 23.7ab 26.1a 25.9a 18.8bc 17.1c 3.99 0.710 <0.001
pH 7.56 7.47 7.18 7.12 6.59 7.52 8.27 0.84 0.331 0.163
Do (ppm) 7.68a 7.23a 5.48b 4.67c 5.29b 7.34a 8.46a 2.05 0.432 0.045
Oxygen uptake (%) 87.73b 79.16c 77.43d 89.97b 92.36a 79.96c 78.32d 2.59 0.082 0.024
M.R. 0.73b 0.72b 0.78ab 0.45d 0.50d 0.61c 0.96a 0.56 0.086 0.013

Temp, temperature; DO, dissolved oxygen; MR, metabolic rate. All data were presented as mean ± SD.
R², regression and  correlation between measured parameters and season.
aDifferent superscripts a, b and c within the same raw are significantly difference (P< 0.05).

The correlation matrix was used to describe the relation-
ship interaction between variables (Figure 2). Thus far, we 
have found a high positive correlation between pH and 
DO. Standardized Coefficients were performed to esti-
mates resulting from a regression analysis. It is expressed 
initially as a change in the degrees of standard deviations 
between the dependent variable and the predictor (Pred, 
seasonal period-months to metabolic rates), as illustrated 
in Figure 3. However, a significantly higher variance for 
both temperature and DO was found amongst all parame-
ters (metabolic rate) Pr > F, i.e., Pr<0.0001. Thus, the effect 
of the variables with high variance could explain the met-
abolic rates during the seasonal period. Their fluctuations 
showed a decline in their influence in the period (Septem-
ber). In contrast, the metabolic rate variance increases in 
summer months, e.g., June and August and the beginning 
of the cold season in period September-October. Dissolved 
oxygen coincides with the temperature variable, with the 
maximum effect on the metabolic rate over a wide range 
(4 – 10 ppm). On the other hand, they extended the two 
different variables to interact with the pH and oxygen up-
take at the levels (7.5 and 85 mg/h/Kg). 

The results of the statistical analysis of the stress factors per 
season are shown in Table 2. The correlation matrix, ANO-
VA, and regression equation, which links variables with 
each other, were derived into one formula to display the 

output of the metabolic rate as a function of the farming 
season (7 months), as a statistical investigation model. The 
regression equation of the model (metabolic rates/ season 
period) is as follows:

Y = 3.86 - 0.13* X1 + 0.15* X4 - 0.25* X2 - 0.25 - 03* X3 
+ 0.29*Period-April + 0.45*Period-August + 0.18*Peri-
od-July + 0.37*Period-June + 0.52*Period-May + 0.29*Pe-
riod-October.	

Where metabolic rate (Y); temperature (X1); dissolved 
oxygen (X2); oxygen uptake (X3); pH (X4); and ‘Peri-
od-Month’ stands for obtained data a mean of a month 
during season period. The September period does not fall 
within the regression equation due to a lack of power to 
influence the equation; thus, it was excluded.

Standardized Coefficients
Estimates resulting from regression analysis of stress var-
iables were standardized to eliminate factor variability. 
Therefore, standardized coefficient results refer to how the 
stress parameters will differ per standard deviation. For 
simple linear regression following orthogonal predictors, 
the standardized regression coefficient corresponds to the 
correlation between all stress variables. As a result, given 
the R-squared, 8% or 0.086 of the dependent variable Y 
variability is explained by the explanatory variable. Given 
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the p-value of the F statistic computed in ANOVA (Table 
2) and given the significant level of 5% (95% conf. inter-
val), the information brought by the explanatory variables 
over the seasonal period is highly substantial in October 
(0.964). 

In an attempted recovery trial, it was found that the bio-
logical rhythm of the process of preparations for winter-
ing, such as high metabolic rates, were lesser than those 
observed in the remaining months. While, we did not find 
any effect in September, as illustrated in Figure 3. This 
result was reflected when paddlefish transitioned to the 
hibernation stage in wintering ponds, with a low meta-
bolic rate through decreasing optimal water quality and 
increasing stress factor ranges, as described by (Vasilyeva 
and Elnakeeb, 2019).

Figure 4: Scree plot of principal component analysis of 
paddlefish stress factors with the response (Metabolic 
rates) over the season period between eigenvalue and 
principal components or factors. The Scree plot illustrates 
the high percentage of cumulative variance associated 
with each PC or F obtained by drawing a graph between 
eigenvalues and factor numbers for the scaling of the x and 
y-axes.

Figure 5: Overall principles component analysis (PCA) 
bi-plot of scores and loading for the contribution of the 
active observations (7-months period represented as blue-
points) to the parameters (red-color coded to their active 
variables), collected during production season 2018, the 
period from April to October.

Figure 6: The correlation circle or variables chart shows 
the correlations between the Principal Components (PCs; 
PC1 and PC2) and the variables.

Principal Component Analysis (PCA)
Stressors associated with multivariate plant strategies were 
evaluated, and an analysis of the paddlefish stress factors 
and response effect on metabolic rate performed by prin-
cipal component analysis (PCA) revealed that 77.47% of 
the variance was explained by the two main factors F1 and 
F2 or PC1 and PC2 (Figure 6).

Data inputs did not have any missing trait values. Subse-
quently, it was analyzed with a correlation matrix (Spear-
man) and regression analyses. Values in bold are different 
from 0 with a significance level of alpha=0.95. Then, the 
dataset was prepared to enter into the XLSTAT® pro-
gram. First, eigenvalue scores were calculated depending 
on variability (%) and cumulative value (%), as shown in 
Tables 3 and 4. Eigenvalues play an essential role in build-
ing eigenvectors based on two principal vector scores: F1 
(variability accounted for 43.26%) and F2 (variability ac-
counted for 34.21%) of the remaining variance as a total 
factor plane (F1 and F2: 77.47%). Then, factor loading 
gradually increased from the highest eigenvalues to the 
lowest (Figures 4 and 5, Table 3).

Correlations between variables and factors were conduct-
ed to determine which active variable must be selected 
for axes rotation. All vectors (five vectors) were chosen to 
resemble axes rotation generally. The eigenvectors result 
showed PCA-analysis was strongly related to the stress 
factors axes in the positive transformation of two by two 
between pH and DO. However, there was a negative axes 
rotation for both temperature and oxygen uptake. The pro-
jection of variable scores onto the PC1-PC2 plane depict-
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Table 3: Principles Component Analysis (PCA) by Eigenvalues. Two principal components (PCs, PC1 and PC2) were 
selected to describe cumulative variance 77.47% of the parameters contribution. All values in bold correspond for each 
selectable factors scores loading. 
PCA analysis Factors

F1 F2 F3 F4 F5
Eigenvalue 2.16a 1.71b 0.649 0.274 0.203
Variability (%) 43.25a 34.21b 12.98 5.49 4.06
Cumulative % 43.25a 77.46b 90.45 95.94 100
Stress factors
Temperature -0.525 -0.207 -0.648 0.229 0.457
pH 0.541* -0.315 -0.314 0.651 -0.293
DO 0.550* -0.361 0.051 -0.297 0.690
Oxygen uptake -0.331 -0.494* 0.671 0.420 0.136
Metabolic rates 0.138 0.695* 0.169 0.509 0.459

aValues in bold correspond for each selectable factors scores loading. 
aThe first principal component (PC1 or F1) is the combination of variables explaining the greatest amount of variation accounted 
43.256 % variability with eigenvalue 2.163.
b The second principal component (PC2 or F2) considered the second largest amount of variations accounted 34.210 % variability 
with eigenvalue 1.710.

Table 4: The linguistic terms of the Fuzzy inference system (FIS) derived from the various stress factor ranges (Tune 
fuzzy membership functions, MFs, FIS-Mamdani).
Stress Parameters LINGUISTICS TERM (Input / Value)

L M H R
Crisp input
Temp (°C) 6 – 21 21 – 29 29 – 37 6 – 37
DO (ppm) 2 – 4 4 - 8 8 - 11 2 - 11

pH 1 - 4 4 - 10 10 - 13 1 - 13
Oxygen uptake (mg/h/Kg) 40 – 70 70 – 90 90 - 120 40 - 120
Crisp output
Metabolic-Rates (%). 1 – 60 60 – 90 90 - 221 1 - 221

Temp, temperature; DO, Dissolved oxygen, L, Low; M, moderate; H, high; R, range.

ed each observation, and measurements for all factors over 
the seasonal period were found as a discrete cloud of points 
with minimal overlap between them (Figures 5 and 6). 

Biplot-PCA demonstrated the distribution of the active 
observations (Month-period, represented as blue-points) 
on each multivariate parameter complexity (red-color cod-
ed to their active variables), were collected during produc-
tion season 2018, period from April to October, as illus-
trated in Figure 5. The PCA red-axes were interpreted as 
gradients of overall record complexity (Meffe and Sheldon, 
1988). The results revealed a high correlation between the 
seasonal period and levels of stress parameters that ranged 
from a positive relationship in certain months (i.e., May 
and October). For the first time, it was observed that met-
abolic rate was affected in September, whereas one-way 
ANOVA and regression coefficients could not detect any 
influence in September.

Factor scores were calculated by loadings associated with 
variables on PC1 and PC2, and they were consistently 
positive and negative with the same magnitudes (Table 4, 
Factors 1 and 2). Finally, we can identify the squared co-
sines of the variables that were significant for F1 (temper-
ature, pH and DO) and F2 (oxygen uptake).

Modeling and Development of Fuzzy Logic 
System (FLS)
According to the ranges for the paddlefish culture’s stress 
condition factors, one can predict the percentage of meta-
bolic rate (Table 5). Our system’s main objective is fuzzy-
based logic modelling for analysing biological and physical 
data for the growth of the Caspian paddlefish and propos-
es a predictable solution for output data. Therefore, stress 
factors such as temperature, dissolved oxygen, pH, and ox-
ygen uptake scale should be adjusted accordingly. If the 
crisp input variables are not acceptable for season
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Table 5: Fuzzy logic rule base input and output effect on paddlefish metabolic rates.  
Rule base No. Input effect Output effect

IF AND THEN
Temp (°C). pH DO Oxygen uptake M.R. SCORE

1 L M H H H 
10 7 7 80 175 175%

2 M M M H H
21.68 7.555 6.665 81 239 239%

81 L M L M L
14 7 3.15 47.08 6.2 6.2%

Temp, temperature; DO, Dissolved oxygen; MR, metabolic rate; L, Low; M, moderate; H, high; R, range.

al paddlefish production, then that input variable must be 
replaced. Therefore, the reliability of the variables was ver-
ified through previous statistical analyses. We carried out a 
fuzzy logic system subject to successive steps, as in reading 
codes using the MATLAB program. First, the transfor-
mation crisp input dataset was used throughout linguistic 
representations. There were three membership functions 
(𝑛mf) for each factor (𝑛𝑖𝑛𝑝𝑢𝑡𝑠), i.e., low, moderate, and high. 
Each of these stress factors had a different range (numer-
ical data). The type of membership function selected was 
triangular. Metabolic rate output action was subsequent-
ly expressed into three triangular membership functions, 
i.e., low, normal, and high. Then, the membership function 
rules (MFRs) for FIS Mamdani were constructed by the 
following equations:
R (variables) = (𝑛mf) 𝑛𝑖𝑛𝑝𝑢𝑡𝑠
R = (3)4 = 81

Fuzzification was established by converting the numerical 
data to linguistic variables considered to a Sugeno MF by 
assessing the biological ground of the relationship between 
the variables in the natural aquatic environmental scales. 
For each stress factor input, the linguistic MFR consists 
of three sections. ‘IF (antecedence); AND; THEN (con-
sequence)’ parameters interpretation interface (fuzzy con-
troller) associated with the results of accompanying meta-
bolic rates calculated across the fuzzy logic system (shown 
in Table 5).

The adaptive neuro-fuzzy inference system (ANFIS) 
model structure to define the input stress factors and out-
puts. The membership function rules were constructed 
(Figure 7). 81 rules were created to assess three linguistic 
terms, i.e., low, moderate, and high, which typically orig-
inate from each different aquatic stress factor to hold a 
non-fuzzy dataset (81-membership function rules) of four 
stress factors.

The rule base is a simple (IF-And-THEN) condition with 
linguistic terms (4×81 fuzzy interaction pathways among 
initiated and terminated MFR). The results obtained rep-

resent the inference crisp output non-fuzzy dataset (81 
numerical data output) of paddlefish metabolic rates. The 
membership rules involved in the model structure of AN-
FIS mapping provide interaction pathways among initiat-
ed input stress factors to be affected and transmuted be-
tween 81 neural network nodes that are emitted from the 
four inputs up to termination in the metabolic rates node 
before all ending nodes are aggregated into the final crisp 
output, as shown in Figure 7.

Figure 7: Model structure of Adaptive Neuro-Fuzzy 
Inference System (ANFIS) designer. ANFIS can be 
formed by white nodes, which typically originate from 
each different aquatic stress factor (black nodes), using 
three linguistic words. This mapping properly provides 
interaction pathways among initiated input factors to 
affected and transmuted between (81- membership 
function rules) in neural network blue nodes emitted from 
four inputs up to terminate in metabolic rate black node, 
before that is all ending nodes aggregate into final output 
crisp.

Prediction
Prediction of crisp data is easy to collect manually via mov-
ing the vertical axis for each of the four variables located 
within their linguistic ranges. The results demonstrated 
fluctuation in the range of each input parameter on the 
output dataset values expressed in metabolic rates. 
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Figure 8: Prediction of Crisp data is collected manually 
via moving the vertical red-axis for each variable of 4 
variables within linguistic ranges (yellow-color), displaying 
the effect of deflection on the output dataset values (blue-
color) expressed in metabolic rates. Membership function 
rule viewer in a fuzzy logic system from the left-to-right 
side: If temperature 21.7 °C; pH 7.55; dissolve oxygen 
6.67; oxygen uptake 81, then the metabolic rate will be 
239 that means is very high.

Figure 9: Surface 3D-graph can examine by degrees of 
colors and values for output surface (metabolic rate, yellow 
low-values to green high-values) of a fuzzy inference 
system (FIS) for two inputs parameters (4 stress factors, 
dark blue low-values to light green high-values). (a) Surface 
viewers conclude that the metabolic rate percentage 
increased from 300 to 500, when the dissolved oxygen 
(dependent variable) decreases to 4 ppm, and temperature 
(independent variable) reduced below 25  °C to reach at 
14  °C when it goes up this considerable percentage. (b) 
The metabolic rate percentage increases substantially 
when oxygen uptake (dependent variable) increases up to 
100 mg/h/Kg, and pH  (independent variable) holds an 
average value of about 7.5.

The strength of the analysis is reflected in the acceptance 
of the logical rules that the researchers constructed based 
on the biological knowledge of paddlefish and the condi-
tions of their farming in different environments. In line 
with the obtained results of statistical analyses, the correla-
tion of the temperature and dissolved oxygen changes was 

present as an inverse relationship and significantly affected 
the metabolic rate. Each row of images represented one 
rule numbered from one to 81. A column of plots allocates 
an input variable on the left side with a yellow color and an 
output variable on the other side with a blue color. Figure 8 
shows that if the temperature is 21.7°C, the mean temper-
ature is moderate; if pH=7.55, the mean pH is moderate; 
and if the dissolved oxygen=6.67, the mean DO is high. If 
the oxygen uptake is 81 mg/h/Kg, which is mild, then the 
metabolic rate will be 239, which is very high. The data 
forms obtained from prediction analysis were shown in the 
simulation system involving an Adaptive Neuro-Fuzzy In-
ference System (ANFIS).

Simulation
Training and checking the fuzzified output of the fuzzifier 
were carried out as the last steps of FLS during the sim-
ulation technique. The metabolic rate crisp outputs from 
Mamdani-MFs must be converted to the Sugeno func-
tion file shaped data.fis to be transformed into the ANFIS 
window, as mentioned earlier in methodology, MFs rules 
in the output of the fuzzifier dataset involve converting of 
a Mamdani into a Sugeno system to overcome the non-
linear changes in the input values. The training numerical 
dataset file is data.dat. As required for processing (plant), 
ANFIS involved five columns consisting of 4 input stress 
factors and one metabolic rate. It was necessary to gener-
ate FIS for on neuro-fuzzy map (Figure 7). 

The results are represented in the surface viewer among all 
stress factors that examine the output surface of the FIS 
(Figure 9).

From the surface, the three-dimensional graph revealed 
that the metabolic rate percentage increased when the 
temperature as an independent variable was below 22°C 
with two levels; the first level occurred when the tempera-
ture was low with the start of the season in October, access 
to the winter season. Moreover, the other class was when 
the temperature was moderate in May due to the rise of 
the metabolic rate due to the relative stability in the rest 
of the stressors. In contrast, the metabolic rate decreases 
with the end of the season or the cold season’s beginning. 
Dissolved oxygen coincides with the temperature varia-
ble, with the maximum effect on the metabolic rate over a 
wide range (4 – 10 ppm). On the other hand, the two other 
variables’ results as an interaction with the pH and with 
oxygen uptake at the levels (7.5 and 85 mg/h/Kg). Surface 
3D graphs perform a vital function as a powerful tool, and 
the results confirm the relationships between the four var-
iables are associated with paddlefish metabolic rates.
.
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METHODOLOGY

The system and study area
The study area was a fish production farm in the Caspian 
Fisheries Research Institute (CaspNIRKh) (Fig. 1). The 
site is located at the GPS coordinates [(46° 4’ 23.9664” 
N; 47° 43’ 45.1056” E) latitude=46.073324 and longi-
tude=47.729196], west of the Astrakhan region. The farm 
was located in southern Russia and the water was sup-
plied from the Volga-Caspian river. The twelve earthen 
pond fish farms follow the polyculture system (paddlefish 
Polyodon spathula + beluga and Russian sturgeon). The aq-
uaculture system followed extensive poly cultured with an 
intensity of 850 kg per hectare. Each earthen pond within 
the system had the size of two hectares. The pools were 
filled with freshwater obtained from the Volga river water, 
and the depth of water in them was 2 m. The reared species 
of fish evaluated in this study were from a native Amer-
ican paddlefish species commonly raised in Russia, aged 
approximately one year at the end of the breeding season. 

Data collection 
The water and fish samples were collected from the fish-
ponds every two days from April until the last production 
season of 2018 (October). The present study employed the 
physical parameters, such as temperature, pH, and dis-
solved oxygen of water quality in fuzzy inference systems, 
to develop a model for assessing paddlefish’ stress rearing 
conditions. All water physical and chemical were meas-
ured three times daily until the end of the studying period. 
Dissolved oxygen (mg/L) was measured using the Portable 
multimeter model AZ-8603 with 0.01 precision. The tem-
perature and pH values were measured using the AD-130 
Multi-Parameter Splash-Proof pH-ORP-TEMP Port-
able Meter (ADWA Co. Szeged – Hungary). The body 
weight samples were taken monthly and calculated as an 
average of biomass (Initial and Final weights, Kg), as the 
individual weight increased. The final body weight (Wf) is 
used to construct a regression equation for oxygen uptake, 
as recommended by (Mims and Shelton, 2015), between 
10 and 29°C using the following equation:
Y= 7.66 (t) 0.979 × (M) 0.918					   
			   (1)
where Y = oxygen uptake (mg/h), t = temperature (°C), and 
M = body weight (kg).
The data were obtained and re-assembled as an average 
for each parameter. Six hundred and thirty records were 
selected throughout the cultivation seasons for processing 
and inclusion within the modeling systems.

Statistical analysis of measurements
The choice of the parameters, the most relevant ones, is 
always essential to predict the fish’s biological performance 
based on past data using statistical analysis knowledge, i.e., 

estimated normality using the Shapiro-Wilk distribution 
test, calculated the correlation, standardized, and regres-
sion coefficients. There were two replicates per parameter 
for all rearing months. Total records were 28, and one sea-
son consisted of seven months. Statistical analyses were 
carried out by using XLSTAT ® statistical analysis soft-
ware version 2019.2.1 (XLSTAT, 2019). 

Process follow-up began with data preparation and testing 
of assumptions to validate the hypotheses of normality and 
homogeneity of variances. Then, we use arithmetic influ-
ence diagnostics as a residual value to obtain standardized 
residuals. The potential of modeling was used to evaluate 
the highest variability with the dataset interaction. After-
ward, variables were re-assembled by eigenvalues and ei-
genvectors to determine the relationship between different 
variables, and principal component analysis (PCA) was 
conducted. However, the fulfillment of the presumed dis-
tribution of data is a prerequisite for the implementation of 
a particular type of control map; in different circumstances, 
a false explanation of results may occur. A correlation ma-
trix was calculated for the four-stressor variables to exam-
ine their interrelationships. Principal component analysis 
(PCA) using the correlation matrix was conducted on the 
input dataset variables to partition the dataset into sever-
al composite records with vectors with loading variables. 
The PC axes were interpreted as gradients of overall record 
complexity (Meffe and Sheldon, 1988). PCA provides a 
score for each record on each multivariate parameter com-
plexity axis to reveal itself in the form of individual factors 
of clusters within the principal component space by the 
separation of multivariate stressors. We must select F1 and 
F2 to obtain a high significance. In the correlation matrix 
(Spearman (n)), bold values are different from 0 with a sig-
nificance level of alpha=0, 95. Then, the eigenvalues given 
the highest score and grade from at least four vectors first 
resulted in high variability (%) and low cumulative values 
(%). The opposite is true for the following factors. Factor 
loading on vectors was performed by determining the cor-
relations between variables and factors. The augmentation 
of the parameter (%) and squared coined coines were con-
ducted to pair each measurement’s values with the element 
in which the largest squared cosine was selected using the 
Construct biplot distribution method. 

Statistical analysis was performed for temperature, DO, 
pH, and oxygen uptake to express the metabolic rate out-
put as a function of the farming season (7 months). In this 
context, a statistical model was constructed to analyze the 
variance, correlation, and regression between the four var-
iables during the breeding season. Data were taken every 
two days, summarized and prepared to be entered into the 
model.

The correlation matrix, ANOVA, and regression equation, 
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which links variables with each other, were derived into 
one formula to show the output of the metabolic rate as a 
function of the farming season (7 months), as a statistical 
investigation model. The regression equation of the model 
(metabolic rates/ season period) is as follows:

Y = 3.86 - 0.13* X1 + 0.15* X4 - 0.25* X2 - 0.25 - 03* X3 
+ 0.29*Period-April + 0.45*Period-August + 0.18*Peri-
od-July + 0.37*Period-June + 0.52*Period-May + 0.29*Pe-
riod-October.	

Where metabolic rate (Y); temperature (X1); dissolved 
oxygen (X2); oxygen uptake (X3); pH (X4); and ‘Peri-
od-Month’ stands for obtained data a mean of a month 
during season period. The September period does not fall 
within the regression equation due to a lack of power to 
influence the equation; thus, it was excluded. The analysis 
of varainace P-value with a significance level of 5% was 
used to compare the information brought by the explan-
atory variables for the least-squares means (LS means) to 
determine the desirable ranges. 

Parameter identification and measurement
The aquatic physical, chemical and biological parame-
ters move into values beyond the optimum range in the 
Caspian Basin and Volga Delta change frequently. Under 
these circumstances, the parameters convert into stressors 
regardless of whether they occur under periodic rhythms 
or not. This change leads to the deterioration of paddlefish 
vitality, affecting the rate of metabolism, and ultimately 
weight loss during the breeding season. Numerous studies 
have explained the consequent decline of metabolic rates 
(e.g., Katunin, 1986; Hubenova et al., 2007). Then, as time 
passed, the fish responds to fluctuations of the parameters 
and adapts its response to these variations within the op-
timum range and outside it. Paddlefish farming stocks are 
menaced as the production be dwindling because of two 
main restrictions; water quality management and parasitic 
diseases such as P. hydriforme in Russia (Raikova, 1994). 
Therefore, restoring paddlefish stocks to begin the produc-
tion process is the Russian government’s target objective. 
The first step is to collect the BIOS Center’s farming con-
straints (e.g., temperature fluctuations, dissolved oxygen 
and pH). Most of the global caviar has obtained from Ac-
ipenseridae especially indigenous sturgeon (Huso huso) of 
the Caspian Sea, under controlling Russia and the other 
four countries. In the last century, turbulence of sturgeon 
fishery management and destruction their habitat in Rus-
sia was observed.

Consequently, Soviet scientists proposed introducing the 
paddlefish to Russia intended for aquaculture to increase 
the availability of Russian caviar (Mims and Shelton, 
2015).  The parameters are divided mainly into what is 
desirable they are not measured and what has been meas-

ured; limited information exists and has been broadcasted 
mostly via pond research studies. Dissolved oxygen should 
be maintained at a volume of more than 50% (i.e., 5.0–3.5 
mg/L at 13–28°C; pH 6–8), as described by Mims and 
Shelton, 2015. This level is generally considered necessary 
for paddlefish classified as high metabolic rates by main-
taining metabolic rates in the upper range of the optimum. 
Data were collected amongst the last farming season re-
cords in 2018 and included temperature, dissolved oxygen, 
pH, and body weight. The previous physical parameters 
were used to estimate oxygen consumption and evaluate 
the metabolic rates of fish, reflect the efficiency of pro-
ductivity during the rearing season. The records of tem-
perature, dissolved oxygen and pH indicate that these 
parameters are outside the optimum range for the fish at 
the beginning of the winter, i.e., in October. Also, during 
the hottest months of the year, i.e., in July and August. As 
outlined above, paddlefish aquaculture’s main challenges 
in Russia relate to previous restrictions, limiting the provi-
sion of the most admirable circumstance for the farming. 
Table 1 shows the ranges of the water parameter and the 
influence of desirable and acceptable scales on the paddle-
fish weight gain. In addition to “linguistic terms”, which 
are defined as expressions for the input variables, that are 
classified into three ranges (Low, Moderate and High), as 
mentioned in Table 5. 

The metabolic rate is directly related to temperature and 
oxygen uptake (Lefevre et al., 2016), affecting growth. The 
high temperatures reduce dissolved oxygen in water, which 
decreases metabolism, under these conditions, The opti-
mum growth temperature is 16–18°C at Mississippi–Mis-
souri fish farms in the united states (Barton et al., 1998). 
In contrast, the American paddlefish’ habitats in southern 
Russia, under higher temperatures condition 22–28°C and 
oxygen consumption, found the feeding rate was increased 
and led to high metabolism (Mims and Shelton, 2015). 
Oxygen consumption is also related to size and tempera-
ture; smaller paddlefish have a higher metabolic rate than 
larger paddlefish (Patterson et al., 2013). 

Modeling and Development of Fuzzy Logic 
Systems
Fuzzy logic-based methods and fuzzy logic formalism 
have been demonstrated as appropriate to address the 
uncertainty and subjectivity in complex environmental 
problems (Alamdar et al., 2010; Sylaios et al., 2010). Our 
proposed modeling system intends to check the conclu-
sions drawn by traditional statistical analysis and control 
design. To provide a proper representation of systems, this 
advanced system “fuzzy logic system for paddlefish aqua-
culture in Astrakhan” takes four stress factors: temperature 
(T°C), dissolved oxygen (DO), pH and oxygen uptake, as 
crisp input datasets (raw data), and converts these variables 
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into a single, fuzzified (linguistic variables, as a member-
ship function (MF)) output. Inputs are selected for process 
control to determine the desired ranges. The fuzzy logic 
system controls these input stress parameters. It obtains 
the production output as a percentage of the metabolic 
rate (crisp output) of fish, reflecting the deflection in all 
parameters on the metabolic rate of paddlefish. This fuzzy 
logic system uses the fuzzy toolbox in MATLAB®, and 
the program has been written in MATLAB® Version 9.4, 
Release name, R2018a to implement the system.

Measurements of water quality in the current system have 
been considered stress factors affecting paddlefish farming 
when they are within harmful ranges.  Thus, water quality 
is an important indication that provides information on 
metabolic and growth rates, while the fish’s feeding is op-
timum. Also, the correctness of the methods adopted dur-
ing pond management. The fuzzy logic controller (FLC) 
is the main feature of construct controller algorithms in 
which there is no measurement identification compared 
with other conventional control systems available for use. 
Therefore, the foremost insight into using the fuzzy tool 
to answer the domain fuzzy logic hypothesis of the current 
study is how water quality (four parameters) can respond 
indirectly to paddlefish metabolic and growth rates utiliz-
ing variable ranges.

The selected inputs have a different range of values, and 
their unit is one of the power points of fuzzy logic (FL), 
which can drive multiple types of data and measurements, 
as described in Table 5. The main parts of the fuzzy logic 
control scheme and steps are shown below.

Fundamental Components of the Fuzzy Logic 
Control 
Fuzzy logic process requires converting the log data into 
a quantitative form. It shortens the time needed for en-
gineering development and is appropriate in aquatic sys-
tems, particularly if more than two parameters are entered 
into the system (Gaur et al., 2010). Initially, four inputs 
were identified (temperature, dissolved oxygen, pH, and 
oxygen uptake), and only one output was determined, i.e., 
the percentage of paddlefish metabolic rate. The primary 
fuzzy logic control system can be divided into two signifi-
cant steps that are explained below.		

The first step is fuzzification by translating the numer-
ical data of the four input parameters to linguistic vari-
ables/terms or truth-values to convert the system into 
crisp inputs based on rule evaluation, i.e., compute out-
put truth-values. The output data are also categorized 
into three levels. The parameters have no level; they are 
assigned degrees of membership in three classes as low, 
moderate, or high. Accordingly, the metabolic rate of the 

paddlefish is described as low, normal or high. The purpose 
of fuzzification is to map the inputs from truth dataset to 
values from 0 to 1 using Mamdani-MF degrees.	

The second step concerns the membership functions (MFs, 
Fuzzy Inference systems-Mamdani) for crisp input rang-
es of parameters sorted under acceptable ranges, such as 
those occurring in fishpond conditions. Inputs are applied 
to a set of (IF-And-THEN) condition control rules with 
three linguistic representations, e.g., temperature range 
from 6 to 37°C. If the range is 6 – 21, the temperature is 
low, then the metabolic rate is also low; if the range is 14 – 
29, the temperature is moderate, then the metabolic rate is 
normal; and if the range is 21–37, the temperature is high, 
and then the metabolic rate is high. Like the temperature 
ranges, the dissolved oxygen, pH, and oxygen uptake rang-
es were also specified for diverse stress factors.

Finally, defuzzification and termination with crisp out-
put, fuzzy Inference systems-Mamdani were conducted to 
pair the rule strength with the output membership func-
tion to get an output distribution. Ultimately, defuzzifying 
maps the output distribution as a fuzzy set to a crisp set 
(Numerical data). The fuzzy logic control scheme’s basic 
configuration consists of four main components: initiated 
by crisp input; 1) fuzzification; 2) rule base; 3) inference 
engine; and 4) defuzzification and termination with crisp 
output.

Crisp input: During the linguistic representations within 
fuzzy logic,  Mamdani  fuzzy inference engine is used to 
create a control system by aggregating a set of input vari-
ables data to design fuzzy MF rules. The input range data 
will be truth-values, not linguistic terms, as it is needed in 
the original form to act with a minimal error ratio when 
the fuzzification process prepares the data.

Fuzzification: This is the primary bit in designing a fuzzy 
controller, which is also named the parameter interpreta-
tion interface. In this step, the numerical data are convert-
ed to linguistic variables for each input. There are three 
membership functions (MFs) for each input variable, and 
all of them have a Sugeno MF (to develop a systemat-
ic approach for generating fuzzy rules from a given in-
put-output dataset). Furthermore, MFs rules in output 
level involve converting a Mamdani into a Sugeno system 
to overcome nonlinear changes in the input values. The 
output Sugeno system has constant output MF that con-
form to the centroids of the Mamdani MF results to be 
transformed into the ANFIS.

Membership Functions and Rule base: The rules of 
membership  function  (MFs) is used in both  fuzzifica-
tion and de-fuzzification stages of fuzzy control to create 
neural network nodes from the numerical input data set to 
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the fuzzy linguistic terms and vice versa for prediction and 
simulation the metabolic rate of the paddlefish, whether 
as a low, normal or high. MF is used to assess a linguistic 
term. The rule base is a simple (IF-And-THEN) condi-
tion with linguistic representations and a conclusion, as 
shown in Table 5. We calculated and selected membership 
function rules (MFRs) based on the following formulas:
	 R (variables) = (𝑛mf) 𝑖𝑛𝑝𝑢𝑡𝑠	 				  
			   (2)
	 R (mf ): IF (X1) is L (F) and… and… IF (X4) is L 
(F)				             	 (3)
	 THEN Y = K (mf )					   
				    (4)
where there are four input datasets (variables); rules (R); 
temperature range (x1); linguistics term (L); linguistics 
category fuzzy set (F); oxygen uptake (X4); output fuzz-
ification (Y); and the zero-order Sugeno parameter is a 
polynomial and constant coefficients in the input variables 
x1…x4 (Kmf).

Fuzzy Set Inference Engine: The estimation of fuzzy 
rules and the integration of individual rule results are ac-
complished using toolbox supplies in MATLAB program 
to predict the influence of the FL system’s stressors. There 
were 81 inferred control rules for paddlefish metabolic rate 
control.

Defuzzification: After the inference step, the member-
ship score will be transformed from output linguistic terms 
or truth-values to crisp numerical data using the centroid 
method. Since the fuzzy residue output could not be used 
for more applications, this forcefulness is also expressed as 
an affinity process.

Crisp output: The values obtained in the output range 
are a true numerical dataset that can express paddlefish 
metabolic rate and quickly direct them into the simula-
tion technique, i.e., adaptive neuro-fuzzy inference system 
(ANFIS).

Prediction of Desirable Data
These different input-set variables are loaded from a dat.
file and used to predict the stress factors. Afterward, the 
crisp data prediction process is conducted following col-
lect manually via moving the membership function rule 
viewer’s vertical axis in the MATLAB toolbox for each 
input variable, which is located within their three linguis-
tic ranges, as shown in Figure 8. Before completing the 
process, the stress factor was controlled. Otherwise, all the 
measured parameters were transformed then these values 
are reloaded. The file and the entire process will start over 
again.

Simulation
The final step starts with saving the training data and ver-
ifying it. The training data are stored in a file, in .dat for-
mat. Similarly, the checking data file is stored in the .dat 
form. In the data file, five columns are present in which 
the first four columns represent the input parameters, and 
the last column indicates a single output for the training 
data. In this step, a graph between the dataset index and 
the output can be observed. This graph predicts the train-
ing and checking data that are resulting. With the adap-
tive neuro-fuzzy inference system (ANFIS) designer’s aid, 
the membership functions can be constructed by training 
them with inlet-outlet data into the workspace instead 
of specifying them manually. The program options use a 
back diffusion algorithm solo or in combination with the 
least-squares method and authorize the fuzzy systems to 
learn from the data. An error occurs between loading and 
checking data and testing the FIS checking data, which 
can be viewed in the ANFIS editor window. Simulink ex-
plains all processing of our controller systems for paddle-
fish metabolic rate assessment.

Conclusion

The present study sheds light on the organization of the 
environmental parameters management. The paddlefish is 
reared performing via understanding the range (optimum 
range) of each parameter to the high fish survival rate, fol-
lowed by the interactions between these parameters dur-
ing the seasonal period under Russian farming conditions. 
A comprehensive and updated compilation of statistical 
analysis combined with modern modeling methods based 
on the fuzzy logic control system (FLS) was performed by 
measuring paddlefish metabolic rates in the culture sys-
tem with the help of previous knowledge based on biolog-
ical and non-biological data. We have shown that by tri-
al, a rigorous attempt has been made to use fuzzy control 
methodology to apply the proposed approach and obtain 
results and conclusions drawn using fuzzy logic modeling. 
Not all of the conventional statistical analyses have indi-
cated the actual situation we are experiencing. Therefore, 
modeling techniques and methods can be utilized to pre-
dict and control several stressors affecting metabolic rates. 
Fuzzy logic systems and ANFIS are the most useful tools 
to clarify a phenomenon not visible by other tools and 
analyses used to determine the most critical stress factor 
impacts on ecosystem conditions during the season, as well 
as to on paddlefish vitality conditions. In this context, to 
conclude in the future, we need to propagate the modeling 
and control technique for the rest of the variables affecting 
all aspects of paddlefish breeding. Notably, in the Caspian 
region, researchers should use those approaches.
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