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INTRoDUCTION

Mastitis is a major concern for dairy producers caus-
ing significant economic losses for the dairy indus-

try. The most frequently isolated causative agent related to 
bovine intramammary infection is Escherichia coli (E. coli) 
(Keane et al., 2013; Olde et al., 2008; Bradley et al., 2007), 

Because E. coli is a widespread environmental pathogen, 
can invade the udder. The decrease in the incidence of clin-
ical mastitis has a positive impact on animal health, animal 
welfare, antimicrobial usage, work pleasure, and net farm 
return (Trevisi et al., 2014). Herd management factors, 
such as milking technique and hygiene standards, were as-
sociated with variations in distributions of a mastitis-caus-
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ing pathogen in the herd (Barkema et al., 1999; Dufour et 
al., 2011; Piepers et al., 2011; Levison et al., 2016).

Clinical mastitis can be caused mainly by coliform infec-
tions (De Vliegher et al., 2012). A wide range of systemic 
disease severity, from mild to severe with systemic signs 
including dehydration, shock, and even death (Wenz et al., 
2001). As well as zoonotic public health impact on human 
especially Shiga-toxigenic E. coli (STEC) strains including 
O157 causing bovine mastitis (Lin et al., 2011).

Many problems facing the dairy industry requires antimi-
crobial therapy, Mastitis is one of them (Grave et al., 1999). 
Which is usually employed in treating/preventing mastitis, 
such as β-lactams, sulphonamides, quinolones, macrolides 
and tetracyclines (Bengtsson et al., 2009; Mathew et al., 
2007; McEwen and Fedorka-Cray, 2002). 

The misuse of antibiotics caused drug resistance and 
treatment failures in many cases, especially for multidrug-
resistant bacteria (Suojala et al., 2013; Sweeney et al., 
2018). Carattoli (2008) has announced the antimicrobial 
resistant E. coli strains increase within animals and claimed 
these animals to be a reservoir of such strains for humans 
and the environment. Potential transmission of resistant E. 
coli within animals and humans can occur through various 
pathways, as the food chain (Poirel et al., 2018).

Extended-spectrum β-lactamases (ESBLs) producing E. 
coli, which shows resistance to penicillins, aminopenicillins, 
and cephalosporins, including the third (ceftiofur) and 
fourth (cefquinome) generations, has been commonly 
isolated from food-producing animals with global 
veterinary and public health issues (Seiffert et al., 2013; 
Poirel et al., 2018). ESBLs that inactivates ESCs were 
graded as class A (TEM, SHV and CTXM) and class D 
(OXA) β-lactamases, While plasmid AmpC β-lactamases 
(PABLs) belonged to class C (CMYII) confer resistance 
to a wide variety of β-lactams, primarily 7-a-methoxy-
cephalosporins (Cephamycins) such as cefoxitin (Livermore 
and Woodford, 2006; Jacoby, 2009).  Antibiotics used for 
humans and animals are closely related, abuse of these 
drugs resulted in the development of multidrug-resistant 
bacteria (Cantas et al., 2013; Walther et al., 2017). So, for 
efficient control and treatment of mastitis; the causative 
agents of IMI in dairy herds need to be well-identified. 
Antimicrobial susceptibility determined in vitro has been 
considered as a pre-requisite for treatment. However, in 
vitro activity does not guarantee in vivo effectiveness in 
bovine mastitis treatment (Pyörälä, 2009).

Colistin, a member of polymyxins (polymyxin E), is the 
main drug for E. coli (Kempf et al., 2013; Poirel et al., 
2017). But, Colistin resistance was identified due to the 

emergence of highly transmissible plasmid-mediated colis-
tin-resistant (mcr-1) gene in E. coli strains obtained from 
animals, food, and patients from China (Liu et al., 2016). 
This resistance has created global issues due to the high 
transmission rate of the mcr-1 gene to epidemic strains 
of Enterobacteriaceae and thus hinders the effectiveness of 
colistin in humans (Rebelo et al., 2018).

The objectives of this study were to identify the impact of 
multidrug resistance development of E. coli strains isolated 
from mastitic dairy cow’s milk, evaluate phenotypic an-
tibiotic resistance profile of isolated strains and their as-
sociation to genotypic antimicrobial resistance to provide 
efficient treatment.

MATERIALS AND METHODS

Sample Collection
205 pooled milk samples were collected using the Califor-
nia mastitis test (CMT) from 205 mastitic dairy cows from 
five dairy farms located in Fayoum, Ismailia, El-sharkia, 
Alexandria and Giza governorates between November 
2019 and October 2020. Milk samples (approximately 
15 ml) were aseptically drawn from each cow immediate-
ly according to the National Mastitis Council, 1990 then 
samples were transferred to the laboratory for further ex-
amination.

Phenotypic Identification 
Milk samples were cultured in Eosin Methylene Blue 
agar media (EMB) (Oxoid). Agar plates were incubated 
at 37ºC, and the bacterial growth was evaluated after 24 
and 48 hrs. Using phenotypic differentiation of bacterial 
species presumptively based on colony morphology and 
Gram’s staining (David, 2011).

Genotypic Identification
The genomic DNA of all E. coli strains was extracted (Kang 
et al., 2004) and stored at -20°C for detection of genes en-
coding for 16srRNA, rfbEO157 encoding virulence gene 
and antibiotic resistance genes of E. coli strains isolated 
from mastitic milk samples (Table 1).

PCR amplification of 16srRNA encoding gene was per-
formed according to Wang et al. (2002) as illustrated in 
Table 1. The reaction was performed in a volume of 25 μl 
containing 12.5 μl of 2X Qiagen Multiplex PCR Master 
Mix (Qiagen GmbH, Hilden, Germany), 0.5 µl (10pmol/
µl) concentrations of each primer, and 3 μl of DNA 
template. The amplified PCR products were subjected to 
electrophoresis using 1.5% agarose gel.
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Table 1: Oligonucleotide primers used for conventional PCR assay.
Target gene Primer sequence Amplicon size (bps) Source
Detection of E. coli isolates
16S rRNA CCCCCTGGACGAAGACTGAC

ACCGCTGGCAACAAAGGATA
401 Wang et al. (2002)

β- lactamase genes
O157 (rf-
bEo157)

CGG ACA TCC ATG TGA TAT GG
TTG CCT ATG TAC AGC TAA TCC

259 Possé et al. (2007)

E. coli O157 gene
bla SHV CTT TAT CGG CCC TCA CTC AA

AGG TGC TCA TCA TGG GAA AG
237 Fang et al. (2014)

bla TEM CGC CGC ATA CAC TAT TCT CAG AAT GA
ACG CTC ACC GGC TCC AGA TTT AT

455 Monstein et al. (2007)

bla CTX-M ATG TGC AGY ACC AGT AAR GTK ATG GC
TGG GTR AAR TAR GTS ACC AGA AYC AGC 
GG

593 Boyd et al. (2004)

bla OXA ACA CAA TAC ATA TCA ACT TCG C
AGT GTG TTT AGA ATG GTG ATC

813 Ouelletteet al. (1987)

PABLs encoding gene
CMY II AGCGATCCGGTCACGAAATA

CCCGTTTTATG CACCCATGA
695 Junyoung et al. (2009)

Colistin resistance encoding gene
mcr1 AGTCCGTTTGTTCTTGTGGC

AGATCCTTGGTCTCGGCTTG
320 Ana Rita Rebelo et al. (2018)

Esc Resistant E. Coli Isolates Identification
ESC E. coli isolates were determined by resistance to 
one or more third and fourth generation cephalosporins 
(CDC, 2020).

Antimicrobial Susceptibility Test
Antibiotic susceptibility test of E. coli isolates against nine 
different antibiotics was performed according to the Kir-
by-Bauer disc diffusion method using Mueller-Hinton 
agar (Bauer et al., 1966).  The susceptibility of the E. coli 
isolates against each antimicrobial agent was measured and 
readings have been noted and compared with the Clini-
cal and Laboratory Standards Institute guidelines (CLSI, 
2020) (Table 2).

Table 2: Different antimicrobials used in disc diffusion 
method.
Antibiotic Concentration Abbreviation
Tetracycline 30 μg TE
Cefoxitin 30 μg CX/FOX
Cefotaxime 30 μg CTX
Trimethoprim Sul-
famethoxazole

1.25/23.75 μg SXT

amoxycillin clavulanate 20/10 μg AMC
Cefquinome 30 μg CEQ
Cetazidime 30 μg CAZ

RESULTS AND DISCUSSION

A high phenotypic prevalence (using EMB) of E. coli 
intramammary infection from mastitic dairy cows (68 
out of 205) at the percent of 33%, where the genotypic 
prevalence (PCR to detect 16S rRNA gene) revealed 30.7% 
(63 out of 205) of dairy cows contract E. coli infection. The 
prevalence rate of bovine mastitis caused by E. coli was 33% 
of the overall milk samples. Most infections of the cows 
with E. coli are from their environment, as faces and straw 
as hypothesized by Lipman et al. (1995).

The proved 63 E. coli strains were then subjected for 
detection of E. coli O157 virulence gene, where only two 
STEC strains having rfbEO157 encoding gene had been 
detected using uniplex PCR at a percentage of 3.2% 
(Figure 1 & 2).  Shiga toxin-producing E. coli (STEC) 
strains considered to be the most important pathogens of a 
recently emerged group of food-borne strains in the milk of 
infected cows. This type of strain has been associated with 
outbreaks of diarrhoea, gastroenteritis and hemorrhagic 
colitis (HC) or the hemolytic uremic syndrome (HUS) in 
humans (Karmali, 1989; Paton and Paton, 1998; Beutin 
et al., 2004). It is agreed with Hassan et al. (2012) who 
recorded that STEC strains can induce bovine mastitis 
and reduce milk quality for human consumption because 
some of the mastitis cases are subclinical and the diagnosis 
is based solely on accurate diagnostic tests. 
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Figure 1: Uniplex PCR for 16s rRNA detection of E. 
coli, Lane M:100-3000bpDNA marker; Lanes 1-10 were 
positive E. coli isolates.

Figure 2: PCR for detection of rfbEO157 encoding gene. 
Lane M:100-3000bpDNA marker; Lane 1, 2: positive 
isolate for rfbEO157 gene; Lanes 3-7: negative strains.

Domestic ruminants, especially cattle, sheep and goats, are 
the principal reservoirs of STEC strains that cause human 
infections (Zschock et al., 2000; Chapman et al., 2001).

Regarding resistance genes, all of the isolates (100%) 
encoded TEM-type ESBLs, while none of which (0%) 
encoded OXA-type ESBLs. But, both CTX-M-type 
ESBLs and SHV-type β -lactamases were encoded in 
53.9% (34 out of 63) and 4.7% (3 out of 63) of the ESBL 
isolates, respectively. Also, 27% exhibited CMYІІ-type 
PABLs. For plasmid-mediated colistin resistance encoding 
gene (mcr-1) was expressed in only one E. coli isolate at a 
percentage of 1.6% (1 out of 63). Regarding phenotypic 
non-β-lactams antimicrobial resistance, about 45.7% of E. 
coli isolates showed resistance to tetracycline, while 37.3% 
exhibited resistance to Trimethoprim-Sulfamethoxazole. 
This finding is similar to Sobhy et al. (2020) who associated 
higher resistance to Tetracyclines and Sulfamethoxazole/
Trimethoprim with the prolonged use of these cheap 
antibiotics in the Egyptian dairy farms. In the same regard, 
Okubo et al. (2019) reported about 47.8% of bovine E. coli 
strains were co‐resistant to Ampicillin, Tetracycline and 
Sulfamethoxazole/Trimethoprim due to extensive use of 
these antimicrobials in Ugandan livestock.

Concerning molecular detection of the mcr-1 gene in ESC 
E. coli isolates were about 3%. This finding is in contrast to 
Umpiérrez et al. (2017) who recorded the absence of the 
mcr-1 gene in bovine E. coli strains, while Haenni et al. 
(2016) who detected an increase in the proportion of mcr-1 
within ESBL-producing E. coli strains ranged from 4.76% 
in 2006 to 21.28% in 2014, prompting reducing colistin 
exposure.

Figure 3: Multiplex PCR for detection of blaTEM, blaCTXM, 
blaSHV and blaOXA genes in E. coli isolates. Lane M:100-
3000bpDNA marker; Lane 1 positive blaTEM& blaSHV at 
445, 237bp, respectively; Lanes 3,9 positive blaTEM at 445bp; 
Lane 4 positive blaCTXM, blaSHV at 593, 237bp, respectively; 
Lanes 5-8&10 positive strains for blaTEM & blaCTXM at 445 
and 593bp; Lane 2 negative sample.

Figure 4: Multiplex PCR for mcr1 and blacmyІІ genes 
detection, Lane M:100-3000bpDNA marker; Lanes 2,5, 6 
and 7 were positive blacmyІІ at 695bp, while Lane 14 positive 
mcr1 and blacmyІІ at 320, 695bp, respectively. Lanes 1,3, 4 
and 8-13 are negative samples.

21 E. coli isolates demonstrated phenotypic resistance to 
cefotaxime (CTX) and were encoding for the blaCTX gene. 
But, only 4 isolates showed phenotypic resistance although 
they lack blaCTX resistance gene (Table 3 & 4) & (Figure 
3 & 4). The phenotypic resistance to ESCs antibiotics 
as (Cefotaxime, Cefquinome and Ceftazidime) was in-
creased, due to their extensive and widespread use in veter-
inary medicine as mentioned by Ahmed and Shimamoto, 
(2015) when they declared that ESCs (3rd and 4th genera-
tion Cephalosporins) are necessary antibiotics used in vet
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Table 3: Comparison between phenotypic and genotypic antimicrobial resistance pattern of E. coli isolates and their 
relation to O157 virulence gene.

Isolate 
code

O157 Resistance phenotype ESBLs genes Colistin 
resistance
mcr1

PABLs
blacmyІІΒ-lactams Non 

Β-lactams
CX CAZ CTX CEQ AMC SXT TE blaTEM blaCTX blaSHV blaOXA

2, 18 + + + + +
11, 57 + +
14 + + + + +
15 + + + + +
16 + + +
17 + + + + +
20, 175, 
177, 178

+ + +

22, 50, 
35

+ + + + + +

23 + +
28, 41, 
187, 204

+ +

34, 46 + + +
42 + + + + + +
45 + + + + +
48, 188 + + + +
81 + + + + + + + +
103, 104, 
109, 111

+ + +

110, 202 + + + +
130 + + + + + + + +
148 + +
149, 150, 
163

+ + +

151 + + +
155 + +
157 + + +
176 + + + + + + +
179 + + + +
181 + + + + + +
182 + + + + +
183 + + +
184 + + +
185 + + + + +
186 + + + + + + + +
189 + + + + + + + + + +
191 + + + + + + +
192 + + + + + + + + + +
194 + + + + +
195 + + + + + + + + +
196 + + + + + + + + +
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198, 200 + +
203 +

Table 4: Multidrug resistance pattern and resistance gene of E. coli isolates
Number of 
isolates

Resistance phenotype 16s
RNA

O157 ESBLs genes Colistin
(mcr1)

PABLs 
(blacmyІІ)TEM CTX SHV OXA

17 SXT, CTX, CEQ + - + + - - - -
22, 50 SXT, TE, CTX, CEQ + - + + - - - -
35 SXT, TE, CTX, CEQ + - + + - - - -
81 SXT, TE, CAZ, CTX, CEQ + - + + + - - -
14 CX, CAZ + + + + - - - -
109, 111,104, 
103, 77

SXT, TE + - + - - - - -

163, 150, 149 CX, CAZ + - + - - - - -
157 TE, AMC + - + - - - - -
151 SXT, CX + - + - - - - -
130 SXT, TE, AMC, CAZ, CTX, 

CEQ
+ - + + - - - -

110 SXT, TE + - + - - - - +
2, 18 TE, CTX, CEQ + - + + - - - -
42 TE, CAZ, CTX, CEQ + - + + - - - -
45 TE, CAZ, CTX + - + - + - - -
15 CAZ, CTX, CEQ + - + + - - - -
48, 188 CTX, CEQ + - + + - - - -
181 TE, CTX, CEQ + - + + - - - +
182 TE, CEQ + - + + - - - +
185 CTX, CEQ + - + + - - - +
186 SXT, TE, CAZ, CTX, CEQ + - + + - - - +
189 TE, CX, CAZ, CTX, CEQ + + + + - - + +
195 SXT, TE + - + - - - - -

Table 5: Extended spectrum and plasmid mediated ampicilin β-lactamases and colistin resistance genes of E. coli isolates 
from mastitic milk samples.
E. coli isolates ESBLs PABLs no. Colistin no.

blaTEM blaCTXM blaSHV blaOXA blaCMYІІ Mcr-1
No. 63 63 34 3 0 17 1
% - 100 54 4.7 0 27 1.6

erinary and human medicine.

The molecular detection of resistance genes such as ESBLs, 
PABLs and colistin resistance genes revealed that all E. coli 
isolates harbour blaTEM and about half of them bear blaC-

TXM, while 27% of the isolated have blaCMYІІ and only one 
isolate (1.6%) has Mcr-1 (Table 5) (Figure 3 & 4). Chirila 
et al. (2017) and Poirel et al. (2018) declared that E. coli 
may develop resistance to antimicrobials by chromosomal 
genes mutation or by horizontal gene transfer of resistance 
genes within commensal and pathogenic E. coli strains, 

rendering E. coli as a major reservoir of resistant genes that 
could be responsible for human and veterinary treatment 
failure.

There was a significant increase in isolates with resistance 
genes and exhibit ESC resistance as isolates carried blaTEM,   
blaTEM+ blaCTXM and blaTEM+ blaCTXM+ blaCMYІІ. In addition, 
ESC susceptible isolates also bear resistance genes such 
as blaTEM+, blaTEM+ blaCTXM+ blaCMYІІ, blaTEM+ blaCTXM and 
blaTEM+ blaCMYІІ (Table 6). ESC resistant E. coli strains were 
determined according to their resistance to one or more of 
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Table 6: ESC resistant and susceptible E. coli isolates and their antimicrobial resistance genes profile.
ESC resist-
ance

No. of 
isolates

blaTEM+ blaTEM+ blaTEM+& 
blaCTXM+

blaTEM+, 
blaCTXM+& 
blaCMYІІ+

blaCTXM blaSHV blaOXA blaCMYІІ Mcr-1 blaSHV blaCMYІІ Mcr-1
Resistant 33 15

(45.4%)
1
(3%)

- 1
(3%)

- 7
(21.2%)

1
(3%)

7
(21.2%)

1
(3%)

Susceptible 26 5
(19.2%)

1
(3.8%)

- 3
(11.5%)

- 12
(46%)

- 5
(19.2%)

-

Table 7: Antibiotic susceptibility profile of E. coli isolates
Antimicrobial agents Abbreviation Conc.

(µg)
Susceptible Intermediate Resistance
No. % No. % No. %

Non 
β-lactams

Trimethoprim/Sulfamethoxazole SXT 1.25/23.75 38/59 64.4 0/59 0 22/59 37.3
Tetracycline TE 30 26/59 44.1 7/59 11.8 27/59 45.7

β-lactams

Cefoxitin CX 30 48/60 80 3/60 5 9/60 15
Amoxicillin/ clavulanate AMC 20/10 50/59 84.7 4/59 6.7 6/59 10.1
Ceftazidime CAZ 30 35/59 59.3 6/59 10.2 19/59 32.2
Cefotaxime CTX 30 32/59 54.2 3/59 5.1 25/59 42.3
Cefquinome CEQ 30 29/59 49.1 6/59 10.2 25/59 42.3

the 3rd and 4th generations of cephalosporins (CDC, 2020). 
In this line, the percentage of ESC resistant isolates was 
high 56% (33 out of 59). Based on ESCs resistance pattern 
and the presence of antimicrobial resistance genes, it was 
observed that the highest percentage of ESCs resistant E. 
coli isolates had blaTEM+ blaCTXM followed by blaTEM+ and 
blaTEM+ blaCTXM+ blaCMYІІ. Although ESC susceptible E. coli 
isolates possess β-lactamase resistance genes but were not 
expressed in vitro or phenotypically. It is agreed with Ahmed 
et al. (2009) when declared that E. coli strains showed 
phenotypic antibiotic multi-resistance primarily against 
ESCs, including Cefotaxime and Ceftriaxone, and other 
non-β-lactams; especially Tetracycline, Sulfamethoxazole/ 
Trimethoprim, Nalidixic acid and Ciprofloxacin.

With regard to E. coli isolates, about 45.4% of ESC 
resistant isolates were attributed to the presence of 
blaTEM and blaCTXM genes followed by blaTEM and blaTEM+ 
blaCTXM+ blaCMYІІ combinations at a rate of 21.2% for each. 
Almost all ESBLs producing isolates having blaTEM and 
two combinations including blaTEM + blaCTXM + blaCMYІІ 
and blaTEM + blaCTXM + blaCMYІІ + mcr1, which conferred 
resistance to Cefquinome as ESCs. It was contrary to 
Filioussis et al. (2020) who determined ESBLs producing 
strains from milk have blaTEM + blaSHV + mcr-1 and blaTEM + 
blaCTXM + mcr-1 combinations that conferred resistance to 
ESCs especially cefquinome.

Most ESC resistant E. coli isolates 26/33 (78.8%) have more 
than one antimicrobial resistance gene. This was agreed 
with Awosile et al. (2018) who determined the existence 
of two or more β-lactamase genes within 44% of ESC 

resistant strains, illustrating the phenotypic resistance of E. 
coli isolates is highly dependent on the co-existence of two 
or more β-lactamase genes in such isolates. The majority of 
ESC E. coli isolates 25/33 (75.7%) have β-lactamase CTX 
as reported by Livermore et al. (2007) and Seiffert et al. 
(2013) when it was noted that the worldwide evolution of 
β-lactamase CTX (Cefotaximase) has been identified and 
is known to be the most common cause of ESC resistance 
in the Enterobacteriaceae.

Concerning the antimicrobial susceptibility profile; Seven 
E. coli isolates (11.8%) were susceptible to all antimicrobials 
and only two isolates (3.4%) were resistant to all 
antimicrobials, eleven isolates (18.6%) expressed resistance 
to a single compound, and 36 isolates (61%) showed 
resistance to more than one antimicrobial agent. Whereas, 
twelve isolates (20.3%) were expressing resistance to 3 
related compounds (i.e., Cefotaxime, Cefquinome  and 
Ceftazidime) as extended spectrum cephalosporins (Table 
7) & (Figure 5). Multidrug resistance (MDR) among E. 
coli isolates was high, where 61% of E. coli isolates (36/59) 
showed MDR against two or more antimicrobials, nine 
isolates (15.3%) exhibit MDR for β-lactam antibiotics, six 
isolates (10.2%) for non-β-lactam antibiotics, 19 isolates 
(32.2%) were resistant to both (β-lactams and non-β-
lactams) and two isolates (3.4%) showed resistance to all 
antimicrobial used in this study. Our results were compatible 
with Pasayo et al. (2019) who declared that frequent use of 
antibiotic treatment leading to the production of multi-
resistant strains that pose a major public health threat. 
But not aligned with Ahmed et al. (2009) who stated that 
lower multi-antibiotic resistance has been found in E. coli 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/kanamycin
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strains are 10.4%.

Figure 5: antibiotic sensitivity testing of E. coli isolates.

CONCLUSION

The emergence of antimicrobial resistance in particular to 
the recently introduced antimicrobials such as 3rd and 4th 
generations of cephalosporins in E. coli strains attributed 
to antimicrobial misuse in dairy farms for bovine mastitis 
therapy. E. coli strains acquire antimicrobial resistance 
through plasmid-mediated transfer leading to a widespread 
of multidrug resistance to ESCs, β-lactams and non-β-
lactams antibiotics that can induce treatment failure in 
dairy farms. 
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