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INTRODUCTION

Cisplatin is a well recognized and efficient 
chemotherapeutic drug used to treat many human and 

animal cancers including cancers of the bladder, head and 
neck, lung, ovarian and testis. It is useful for treating a wide 
range of tumor forms including carcinomas, germ cells 
tumors, sarcomas, and lymphomas in cats and dogs (Tozon 
et al., 2001). Encouraging animal experiments led to the 
introduction of cisplatin to laboratory studies in 1971, and 
in 1978, was the first platinum compound approved by the 
FDA for cancer treatment (Kelland, 2007). 

While patients adjust to the preliminary cisplatin therapy, 
resistance usually emerges through a variety of possible 
pathways (Galluzzi et al., 2012). Resistance to cisplatin 

may be either attained during ongoing drug therapy or 
may be a feature of an intrinsic tumor (Rabik and Dolan, 
2007). The maximum doses of cisplatin needed to combat 
resistance can result in severe toxic effects as myelotoxicity, 
neurotoxicity, cardiotoxicity and nephrotoxicity because 
cisplatin destroys malignant and healthy cells the same as 
all other chemotherapeutic agents (Borch and Markman, 
1989).
 
Mechanism of action of cisplatin 
Following intravenous route, the drug flows from blood 
to cells via both passive diffusion and active transmission 
(Gately and Howell, 1993). Cisplatin was meant to reach 
cells solely by passive diffusion, but the data collected over 
the last few years suggested active mechanisms (Filipski et 
al., 2008).
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Before the drug can react with its target, sequential 
aquation reactions must activate the neutral cisplatin 
molecule, which substitutes the cisplatin chloro ligands 
with water molecules (Hincal et al., 1979). The significant 
decrease in the concentration of chloride in the cytoplasm 
relative to the blood makes cisplatin easier to acquire 
(Davies et al, 2000). This form of the drug is very reactive 
and can be down regulated intracellular by interacting with 
several thiol-containing nucleophiles, such as glutathione 
(Kelland, 1993). Cisplatin is thought to do its cytotoxic 
action after aquation by combining to DNA bases and 
developing adducts that ends up causing cell death (Figure 
1) (Pinto and Lippard, 1985).

Figure 1: Structure and mechanism of action of Cisplatin 
(Browning et al, 2017).

Cisplatin causes cytotoxicity by binding to genomic DNA 
(gDNA) and non-DNA targets (GSH, MT) and causes 
necrosis and apoptosis in heterogeneous tumor mass cell 
populations (Fuertes et al., 2003). Cisplatin-formed DNA 
adducts are known to interfere with DNA replication 
(Sorenson and Eastman, 1988). This leads to distortion in 
the DNA structure (Takakura and Hashida, 1996). These 
structural DNA distortions are recognized and coupled by 
several key pathways, which cause different signaling series 
that can result in cell death (Chaney et al., 2004).

Cisplatin also increases oxidative damage by boosting 
reactive oxygen and reactive nitrogen species production 
causing injury to subcellular structures and macromolecules 
like DNA, lipids and proteins (Dos Santos et al., 2012).

Cisplatin resistance
Initial response of cancer cells to cisplatin-based 
chemotherapy is generally high; however, there is a delayed 
retrogression due to the production of cisplatin resistance 
(Yang et al., 2012). Resistance to cisplatin is regulated 
through two separate processes: In the first scenario, 
binding of platinum DNA may be insufficient which 
arise from reduced drug absorption, elevated drug evasion 
or high levels of intracellular thiol-containing agents, 
like glutathione, attach to the platinum core causing its 
inactivation (Holzer et al., 2006).

The second mechanism may be mediated through 
resistance after DNA binding owing to exclusion of DNA 
adducts or increased susceptibility to adducts in tumors 
with hyperactive nucleotide-excision repair NER (the 
key repair pathway for platinum-DNA adduct removal) 
because of factors including increased activity of the DNA 
excision repair endonuclease protein ERCC1 (Dabholkar 
et al., 1992).

Cisplatin side effects
Using maximum doses of cisplatin to overcome resistance 
can result in severe tissue damage, as cisplatin, is non-
selective and has a cytotoxic effect on both healthy normal 
and malignant cells (Oun et al., 2018).

Although successful against tumors, cisplatin therapy 
has serious side-effects such as nephrotoxicity. Clinical 
symptoms of acute and/or chronic nephrotoxicity include 
decreased renal plasma production, glomerular filtration 
rate, increased serum creatinine, and decreased serum 
magnesium and potassium levels (Pabla and Dong, 2008).

Studies in experimental animals demonstrating that the 
kidneys appear to pile up more cisplatin than other organs, 
and that the proximal tubules are the renal structure 
directly impaired by cisplatin. Nephrotoxicity can be 
explained partly because the kidney retains more cisplatin 
than any other organ also it is the key excretory organ for 
the administered drug. Cisplatin mainly absorbed by the 
renal tubules and the apoptosis tissue damage caused by it 
may trigger extreme and possibly irreversible renal failure 
(Miller et al., 2010).

Cisplatin is concentrated in the renal proximal tubule 
cells causing nephrotoxicity, featured by cellular damage, 
loss of microvillus, mitochondrial vacuolization and 
functional modifications involving: blockage of protein 
synthesis, reduction of the activity of antioxidant enzymes 
by reduction of glutathione, lipid peroxidase, and organelle 
dysfunction (Satoh  et al., 2003). Cisplatin was able to 
develop active oxygen species (ROS) such as superoxide 
anions and hydroxyl radicals and to inhibit antioxidant 
enzyme activity in the renal tissue (Hennessy et al., 2002). 

Nephrotoxicity involved changes in electrolytes (hyperK+, 
hypoK+, hyperCa++, hypoNa+, hypoCl+), increased blood 
nitrogen, urea and creatinine, hematuria, polyuria, oliguria, 
urinary tract infections, and renal colic to renal insufficiency 
(Astolfi et al., 2013).

Most patients treated with cisplatin experience 
symptomatic and clinically observable sensory neuropathy 
due to their preferential absorption in the dorsal root 
ganglia (DRG), which results in broad sensory fibers 
neuropathy. Neurotoxicity affected primarily the peripheral 
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system compared to the central nervous system. Paresthesia 
accompanied by headache, speech disorder, dysphasia, 
encephalopathy, syncope, seizures, panic and transient 
ischemic attacks, vision loss, repetitive strain injury and 
lack of motor control were the most common symptoms 
(Albers et al., 2011).

Ototoxicity is another significant complication in up to 80 
percent of patients received cisplatin, described as damage 
to the auditory nerve or to the  vestibular system  of the 
ear. This is triggered by the death of mechano-sensory hair 
cells in both the outer and inner ears that turn physical 
stimuli into neuronal impulses that enable organisms to 
hear and at least 75 percent of human deafness is triggered 
by their death (Cardinaal et al., 2000).

Astolfi et al. (2013) analyzed data from 123 patients with 
different tumor types undergoing treatment revealed 
adverse effects of cisplatin, including myelosuppression 
causing blood disorders such as deficiency of red blood 
cells, white blood cells, neutrophils and thrombocytes.

Cardiotoxicity was also related to treatment with cisplatin. 
The cardiotoxicity results in lactate dehydrogenase (LDH) 
leakages as well as creatine kinase (CK) from the cardiac 
myocytes. This could be secondary processes resulting from 
cardiac membrane lipid peroxidation that is induced by 
cisplatin (Akman et al., 2015). 

While cisplatin-induced kidney injury has attracted 
significant interest, the cardiotoxicity triggered by cisplatin 
remains elusive (Topal et al., 2018). Other effects, such 
as acute and chronic cardiovascular problems, have also 
been identified which may affect the quality of life of 
the patient. Electrocardiographic alterations, myocarditis 
and cardiomyopathy are known to be significant clinical 
symptoms. These cardiac shifts, which lead to reduced 
total dose of cisplatin, may also involve stopping of 
chemotherapy (Varga et al., 2015).

Oxidative stress, apoptosis, and inflammation are generally 
associated with cisplatin-induced cardiac injury (Dugbartey 
et al., 2016). Cisplatin typically causes mitochondrial 
dysfunction and lowers antioxidants in cancer patients’ 
tissues during cisplatin treatment, leading to ROS 
excessive production and resulting cellular degeneration. 
Consequentially, the overloaded oxidative damage triggers 
tissue changes after multiple cisplatin doses, such as fibrosis 
and oedema. In addition, excessive development of ROS 
can generate inflammatory reactions through activation of 
the NF-πB signal pathway; this contributes to enhanced 
pro inflammatory cytokine release in cisplatin-induced 
diseases (Mukhopadhyay et al., 2011).

Bcl-2 (an apoptosis regulator) plays a vital role in the 

apoptosis process while Bax is a significant regulator 
of Bcl-2 function (Zhu et al., 2017). When cisplatin 
stimulates ROS, Bax is transferred to the outer membrane 
of the mitochondria, and changes its permeability; this 
opens the mitochondrial pores and trigger cytochrome C 
leakage into the cytosol, this activates the pro-apoptotic 
caspase 9 and its caspase-dependent downstream sequence 
(Marullo et al., 2013).

Cisplatin caused cardiac and hepatic injuries that were 
indicated by elevation of serum hepatic and cardiac injury 
markers as well as proinflammatory cytokines. Moreover, 
it decreases in the activities of antioxidant enzymes, a 
decrease in glutathione concentration, and an increase 
in malondialdehyde level. Cisplatin also resulted in 
histopathological myocardial and hepatocellular changes, 
and overexpression of p53 and COX-2 in cardiac and 
hepatic tissues (Abdellatief et al., 2017).

Nanotechnology based drug delivery
The aforementioned side effects make it impossible 
for a large number of patients to get the full benefit of 
the treatment. Beside the adverse effects, the body also 
experiences a loss of drug activity linked to inadequate 
circulation and delivery of the drug to the tumor cells, 
along with deactivation processes that completely change 
the chemistry of these molecules before reaching the 
cancer cells (Reedijk, 2003). To overcome these difficulties, 
a wide variety of drug carriers of nanoparticles (NP) have 
been investigated as anticancer drug delivery systems to 
facilitate maximum accumulation of the drug in tumor 
tissue and to further minimize harmful effects (Duan et 
al., 2016).

The concept of a “Magic Bullet” proposed by a German 
physicist nicknamed (father of chemotherapy) was reported; 
a compound that could be developed for specifically 
killing diseased cells (Strebhardt and Ullrich, 2008). If 
this compound could be used to specifically administer 
anticancer drugs straight to tumors, there would be no 
need to think more about off-goal side effects, since the 
medication will only be eligible for action at the intended 
site. A lot of work has been conducted to create a device 
that can precisely guide drug delivery to cancer cells, and 
success in this area is accelerating. Drug delivery systems 
depending on nanoparticles have made dramatic changes 
to the controlled drug release, in particular, anticancer 
drugs due to their physiochemical properties (Lim et al., 
2013). 

Nanotechnology described as the comprehension and 
control of matter at dimensions between 1 and 100 nm where 
specific phenomena allow for novel concept (Hulla et al., 
2015). Compared with unmodified drugs, nanotechnology-
based therapies showed significant benefits, including 
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improved half-lives, survival, performance targeting and 
fewer side effects for patients (Gandhali, 2016).

In order to ensure successful delivery of drugs, two main 
concepts should be involved, first, that the drug should 
be able to enter the target tumor site after injection with 
minimal loss of volume and function in the circulation 
of the blood. Second, drugs can target only  tumor  cells 
without causing harm to normal tissue (Rajshri and 
Tarala, 2007). Combined anticancer drug and nanoparticle 
therapy facilitates synergy and suppresses drug resistance 
by distinct low-dose modes of action. Nanoparticle-
combined drug therapy increases the efficacy of an 
antitumor drug, eliminates possible adverse effects and 
improves its bioavailability (Hu et al., 2010). Previous 
research developed and synthesized Nano drug co-
delivery systems with various anti-tumor drugs. However, 
medications displayed more effectiveness in the nano-drug 
co-delivery system than free drugs due to the disparity in 
drug release rates ( Jain et al., 2010; Wang et al., 2011; Feng 
et al., 2014).

Classification of nanomaterials
As classified by Jeevanadam et al. (2018), most of the 
existing NPs can be divided into four material-based 
categories:
1.	 Carbon based nanomaterials.
2.	 Inorganic based nanomaterials: Those involve 

metal and metal oxides NPs. These materials can be 
formulated from metals as gold or silver nanoparticles, 
aluminum, cadmium, cobalt, copper, oxides of metal 
such as titanium oxide and zinc oxide nanoparticles, 
and semiconductors such as silicon. 

3.	 Organic based nanomaterials: These include materials 
produced mainly from organic matter, such as 
dendrimers, micelles, liposomes and polymer NPs. 

4.	 Composite based nanomaterials: provide any mixture 
of the above types with any type of metal, ceramic, or 
polymeric materials.

Methods of nanoparticles synthesis
As far as the production of nanoparticles is concerned; 
which may be natural or synthetic in origin; has specific 
characteristics at the nanoscale. Basically two techniques, 
including a variety of preparation methods, are applied. 
The first technique is the “top-down” that requires the 
application of external force to decompose solid materials 
into small pieces. In this technique various physical, 
chemical and thermal tools are used to create the energy 
essential for the production of nanoparticles (Iravani, 
2011). The second technique, regarded as “bottom-up,” 
depends on collecting and merging atoms or molecules 
in gas or liquid. These two techniques possess respective 
advantages and drawbacks. In the up-down approach, 
which is more expensive, perfect surfaces and edges cannot 

be obtained owing to the cavities and unevenness which 
might occur in nanoparticles; while other amazing results 
of nanoparticles synthesis can be achieved from the bottom 
up method. Furthermore, in the bottom-up approach, no 
waste materials that need to be discarded and better control 
of the size of the nanoparticles can be acquired (Makarov 
et al., 2014).

Various methods of metal nanoparticles synthesis lead to 
varying sizes, forms, morphology and also stability (Dhand 
et al., 2015). Generally, such approaches can be listed as:
•	 Physical approach: evaporation, condensation and 

laser ablation are the key physical techniques used to 
extract nanoparticles from metal samples.

•	 Chemical approach: The most common method of 
nanoparticles synthesis.

•	 Biological approach (Green synthesis): 
Nanoparticles biosynthesis has drawn great attention 
due to the high demand for eco-friendly methods that 
use environmentally safe reducing and capping agents, 
such as different microorganisms (bacteria, fungi, algae 
and yeasts), biomolecules and plant extracts.

Natural “Green” synthesis method
The biological (green) method; described as an alternate 
to chemical and physical processes; offers an ecologically 
safe route to synthesize nanoparticles. Furthermore, this 
approach doesn’t need costly, dangerous or toxic chemicals. 
Thanks to the biological approach, metal nanoparticles 
with different characteristics can be successfully prepared in 
recent years. In one step, the synthesis can be achieved using 
natural organisms such as bacteria, yeasts, molds, algae and 
plants or their products. Nanoparticles are synthesized by 
reduction using molecules in plant and micro-organisms 
including enzymes, proteins, amines, phenol compounds, 
pigments and alkaloids (Shah et al., 2015). 

In conventional methods, reducing agents responsible for 
the reduction of metal ions and stabilizing agents used to 
prevent excessive aggregation of the resulting nanoparticles 
pose a possibility of atmospheric and cell-toxicity. In 
addition, the contents of the formed nanoparticles are 
known to be toxic in terms of shape, size and chemical 
structure. Nevertheless, nanoparticles with bioactivity are 
produced in the green synthesis process, and the reducing 
agents are naturally present in the biological entities used, 
making them the safest process (Hussain et al., 2016). 

Nano-carrier properties
Nanocarriers’ properties, including their sizes, high surface 
to volume ratios, controlled drug release patterns, and 
targeted modifications, enable them to better reach target 
tumor tissue and release drugs in a safe, regulated manner 
(Wicki et al., 2015). Size is critical for moving through 
the bloodstream and for delivering the nanocarriers to 
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tumor tissue afterwards. Although smaller nanoparticles 
accumulate more easily in leaky blood vessels of tumors 
than larger ones, they may also penetrate into normal 
tissue. On the other hand, the extravasations of larger 
nanoparticles are not as simple and therefore their 
distribution in the bloodstream is unpredictable (Bregoli 
et al, 2016). Nanoparticles with hydrodynamic diameters 
between 30–200 nm can penetrate easily through the leaky 
vasculature of tumours and persist in tumours for long 
periods, generally referred to as enhanced permeation and 
retention impact (EPR) (Dogra et al., 2018).

Fluid dynamics can be influenced by the shape of the 
nanocarriers and thus influence uptake. At present, the use 
of spherical ones appears to be more widespread (Truong 
et al., 2015).

The charge of nanocarriers can also have an effect on 
their blood stability and distribution. Positively charged 
nanoparticles have previously been shown to target tumor 
vessels quite efficiently, but a shift to a neutral charge has 
allowed the nanoparticles to spread more rapidly to the 
tumor tissue (Stylianopoulos et al., 2010).

Surface modifications of the nanoparticles, such as ligands 
to over-expressed receptors, can help to precisely absorb the 
drugs in the tumor tissue. Regulated release mechanisms 
can also prevent the toxic drug from being administered 
unspecifically to normal tissue (Locatelli and Franchini, 
2012).

Cisplatin and nanoparticles conjugates, 
preclinical studies	
Gounden and Singh (2019) explored silver nanoparticles 
(AgNPs) as a way to deliver therapeutic material to 
the nucleus, thereby attacking diseased cells. After 
encapsulation of Cisplatin using a silver NP chitosan (CS) 
biopolymer, the cytotoxicity profiles of the CS-AgNP-CIS 
nano-complexes using sulforhodamine (SRB) and MTT 
assays revealed significant cell death in the various breast 
cancer cell lines. The Nano complexes were evidently more 
effective than the free drug, displaying more than 50% cell 
death at lower concentrations. 

A study by Ramezania et al. (2019) intended to restore 
sensitivity to cisplatin to A2780 cisplatin-resistance cell 
lines in the presence of naturally synthesized curcumin-
coated silver nanoparticles (cAgNPs). Synergic cellular 
effects of cAgNPs and cisplatin on cisplatin-resistant 
ovarian carcinoma 2780 were evaluated using MTT assay. 
Cell death induction in the combined group in A2780 cells 
increased significantly, compared to the free cisplatin or 
cAgNPs, according to the findings.

On the same ground, conjugation of cisplatin and gold 

nanoparticles by a thiolated oligonucleotide linker 
(CIS-AuNPs) exhibited superior potency on the A549 
(adenocarcinomic human alveolar) cell line with an 
IC50  value of 0.9  μM versus 11  μM for cisplatin alone 
(Dhar et al., 2009).

In a recent research was conducted to assess the 
therapeutic effectiveness of the cisplatin embedded in 
polybutylcyanoacrylate (PBCA) nanoparticles for the 
treatment of renal cancer. Cisplatin/ loaded PBCA 
increased the cytotoxicity effects of cisplatin against renal 
cell adenocarcinoma cells (2.3-fold) and substantially 
reduced the concentrations of blood urea nitrogen (1.6 
fold) and creatinine (1.5 fold) relative to free cisplatin. 
This nanocomplex also induced a 1.8 fold improvement in 
the therapeutic effects of cisplatin, where a decrease in the 
mean tumour size (3.5 mm versus 6.5 mm) was observed 
relative to cisplatin treated rats (Ghaferi et al., 2020).

A study also recently formulated cisplatin/ loaded 
biodegradable nanoparticles for the treatment of epithelial 
ovarian cancer (EOC). Cell cytotoxicity was assessed 
following exposure of cisplatin or cisplatin-NP conjugate to 
the cell culture. The efficacy of intraperitoneal chemotherapy 
was also tested in a xenograft model of SKOV3-Luc cells 
in mice. The findings revealed that the highest intracellular 
platinum concentration was achieved with cisplatin-NP 
conjugate and significantly improved efficacy. Aligned 
with in vitro findings, cisplatin-NP conjugate has been 
shown to largely reduce tumor volume in vivo compared to 
free cisplatin. The researchers assumed that nanoparticles 
encapsulated cisplatin serve as an intracellular repository 
that increases cisplatin performance, along with an 
extended release profile (Bortot et al., 2020).

CONCLUSIONS AND 
RECOMMENDATIONS

The formulations of nanoparticles have been developed 
to improve the delivery of drugs and have the ability to 
promote the selective accumulation of cisplatin in tumor 
cells without increasing off-target impacts, toxicity as 
well as reducing its side effects. Cisplatin/ nanopaticles 
conjugate are a promising candidate that can boost efficacy 
and reduce the side effects and toxicity caused by free 
cisplatin, according to the preclinical studies. Further 
studies are required concerning the mechanism, safety and 
therapeutic range of application of such conjugates.
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