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INTRODUCTION
 

Among all the transplants made, bone is said to 
be the second most commonly transplanted tis-

sue after blood (Nandi et al., 2010). The loss of bone 
due to damage is a very challenging problem for the 
orthopaedic surgeons especially in those cases where 
loss of bone is massive. It is a well-known fact that 
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autografts serve as the gold standard for bone grafts 
because apart from the ideal compatibility with the 
tissue from the structural and immunological view 
point they also offer all the desirable characteristics of 
the bone graft material. They are rich in osteoinduc-
tive (bone morphogenic protein), osteogenic (MSC/
osteoblast cells) material and it serve as a best osteo-
conductive (three dimensional and porous) material. 
It requires a site of harvest of the tissue which not 
only increases the pain but also increase time of sur-
gery, bleeding and donor site morbidity (Younger and 
Chapman, 1989; John et al., 2003). It also leads to 
nerve injuries at the multiple harvest sites due to the 
surgery (Ehrler and Vaccaro, 2000). The areas which 
require a large amount of tissue cannot be transplant-
ed with the autograft as the amount of collected tis-
sue is very limited. The allograft and xenograft in this 
situation can be thought of as better option in terms 
of availability and structural similarity with the host. 
Bone tissue engineering involves combination of in-
novations made by different disciplines of science 
(Marco et al., 2014). Grafts that are well tolerated, 
resist infections and rapidly vascularised are the ideal 
characteristics of a biologic graft ( Jacobsen and East-
er, 2008). Allograft and xenograft are associated with 
the surface antigens and other proteins which some-
times lead to rejection and necrosis. In such situations 
they require an in vitro chemical processing which 
brings about removal of all the antigenic materials 
which can be quantified indirectly by protein estima-
tion and total DNA estimation (Zhang et al., 2009). 
There are a number of commercially available bone 
graft substitutes available as solid grafts wedges, gran-
ules, DBM (Demineralized bone matrix) and putty 
etc., which serve as a very positive solution for the 
massive orthopaedic injuries involving reconstruction 
in human beings and animals. The osteoconduction 
and biodegradable quality makes them the excellent 
bone grafts (Oryan et al., 2014). However, in the ex-
panding scenario of tissue engineering still a consid-
erable validation regarding the host immune response 
with the biological grafts are needed. 

BONE GRAFTING 

Bone is highly dynamic and vascularised tissue which 
heals without any scar formation (Sommerfeldt and 
Rubin, 2001). Its main role is to provide structural 
support for the body. Although there is a tremendous 
healing capacity of bone but it is compromised to 

larger extent when there is a big amount of bone such 
as, in cases of severe trauma, developmental deform-
ities, osteolytic disease, and tumour resection (Perka 
et al., 2000; Gugala and Gogolewski, 2002). Auto-
graft harvesting causes the donor site morbidity and 
limited amount of tissue harvest (Seiler and Johnson, 
2000; Antonio et al., 2004) which limit the usage of 
autograft. The allografts are associated with immune 
rejection and pathogen transmission (Berrey et al., 
1990; Lucarelli et al., 2005). There are many synthetic 
materials which can be used to fill bone defects in ex-
perimental and clinical animal studies include growth 
factor, calcium phosphate, hydroxyapatite, tricalcium 
phosphate, type I collagen, bioactive glasses, and syn-
thetic polymers (Shand and Heggie, 2000; Finkemei-
er, 2002; Hing et al., 2006). Imperfect osteoclastic 
resorption and remodelling are the critical disadvan-
tages in the clinical use of synthetic scaffold are (Aro 
et al., 1983; Trentz et al., 2001). Tissue engineering 
employs the knowledge of engineering in life sciences 
to restore the tissue function by the use of biological 
substitutes (DeCoppi et al., 2007). Xenogenic bone 
grafts are preferred due to its unlimited supply espe-
cially when collected from a larger species like bovine. 
However, the limiting factor in the usage of xenogenic 
grafts are the presence of xenogenic antigens and re-
jection of the graft sometimes.  It therefore becomes 
necessary to remove these antigens to minimize or 
avoid the immune response responsible for non-ac-
ceptance/ rejection (Erdag and Morgan, 2004; Gock 
et al., 2004). To accomplish this feature decellulari-
zation is widely adopted technique and is resulted in 
unaltered biologic activity and mechanical integrity/ 
strength (Badylak, 2004; Gock et al., 2004). It is said 
that only extracellular matrix mainly collagen is left 
after the decellularization process and are largely and 
highly conserved across species lines (Constantinou 
and Jimenez, 1991; Exposito et al., 1992). Various 
physical, chemical, enzymatic digestion methods are 
employed to render the tissue of biological origin acel-
lular. Usually the preference is to accompolish com-
plete decellularization with minimum alteration in 
the tissue architecture. Decellularization cause some-
times loss in glycosaminoglycans (GAG) and also the 
alteration in the strength of the material which is very 
crucial in case of bone. The staining for GAG is done 
to correlate the loss of GAG with the intensity of the 
stain when different decellularization techniques are 
employed (Figure 1).
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Figure 1: Photomicrograph showing (A-Native bone) intense GAG staining, (B-SDS treated bone) preserved 
GAG, (C-Acetone/Ethanol treated) less staining for GAG and (D-Freeze and Thawing group) less GAG 
content as compared to native bone. (Safranin-O; x40)

Mostly the scaffolds used in tissue engineering are 
the naturally occurring ones. Many of these scaffolds 
are completely biodegradable and are replaced by new 
host tissue. The scaffolds are also sometimes cross 
linked by chemicals in order to achieve the required 
strength and resist the fibroblastic invasion and deg-
radation (Badylak, 2007). The non-cross linked scaf-
folds are said to be replaced readily by neoconnective 
tissue formation (Trabuco et al., 2007) but for the tis-
sues like bone a material which has a long term stay at 
the site with ability to pace with the rate of substitu-
tion by the host tissue is required. 

SDS is an ionic detergent (Chen et al., 2004; Hudson 
et al., 2004) that has recently been used to decellular-
ize the bovine trabecular bone (Grayson et al., 2008; 
Frohlich et al., 2010) and bovine intervertebral disc 
(Chan et al., 2013). The bovine matrix is the natural 
biomaterial obtained from bovine cancellous bone. It 
is found that the Cancellous bone grafts get integrated 
with the host faster in terms of revascularization than 
the cortical grafts (Pinholt and Solheim, 1994; Ste-
venson et al., 1996). It is so because the permeability 
to blood vessels is easily rendered by cancellous bone 
and it also allows rapid movement of the required 
nutrients from the host tissue. This probably leads 
to increase in the bone cell survival which later on 
deposit the osteioid tissue in the spaces of trabecular 
xenograft. The rate of degradation depends upon the 
method of decellularization and origin of tissue (Gil-

bert et al., 2006). There have also been studies where 
the bovine bone scaffolds prepared by different decel-
lularization techniques are compared biomechanical-
ly, clinically and immunologically scaffolds prepared 
by freeze and thaw cycles when compared to Acetone 
ethanol processing and SDS 1% processing was found 
to be superior both in vitro and in vivo for bone tissue 
engineering in rabbits. The tensile strength was un-
affected and the antigenicity was also reported to be 
minimized (Tamilmahan, 2013).The freeze and thaw 
treated tissues looked brighter and whiter than other 
treatments (Figure 2). 

BIODYNAMIC OF BONE	

Bone is an organized tissue with mineralization 
and helps not only in providing the skeletal support 
but also contribute in the calcium homeostasis ( Jee, 
2001). Trabecular bone is a porous structure having 
around 50-90% porosity. The bone marrow is rich in 
stem cells which is essential in regeneratin of tissues 
(e.g. muscle, cartilage, bone, and tendons) and also 
produces haematopoietic cells. The Cortical bone on 
the other hand is very hard and compact with very less 
porosity of only 10% ( Jee, 2001).

The osteoblasts give rise to the osteocytes which form 
the integral part of bone lining (Calvi et al., 2003; 
Zhang et al., 2003). Osteoblasts cells are typically 
rounded, polyhedral and flat in their morphology hav-
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ing a diameter of around 20 mm ( Jager et al., 2007; 
Pathak et al., 2012). These cells synthesize the oste-
oid containing type I collagen, osteocalcin, (Pathak et 
al., 2012) osteopontin, bone sialoproteins, and bone 
morphogenetic proteins (Robey and Termine, 1985). 
Angiogenesis is stimulated by certain substances se-
creted by the osteoblasts (Fuchs et al., 2007; Santos et 
al., 2009). The remodelling of bone is brought about 
by the Osteoclasts which help in resorption of the 
bone at the tension site. When the bone is subject-
ed to natural pressures of load, there is an orientation 
and parallel arrangement of the fibres making the 
bone more strongly defined in terms of strength. The 
cellular functions are ultimately enhanced or inhib-
ited according to the body requirement. Figure 3 is 
showing the different types of bone cells derived from 
the mesenchymal bone marrow cells on the surface of 
bone. It is importantly noted that the osteoblast cells 
migrate on the concave surface and osteoclasts act on 
the tension site/ convex surface of the bone thereby 
bringing a proper remodelling. 

Figure 2:  Gross appearance of the scaffolds of Native 
bone and decellularized bone

BONE HEALING 

The natural fracture healing process occurs in three 

principal phases. The inflammatory phase occurs first 
and then is followed 4 to 5 days later by the repair 
phase during which mesenchymal cells invade the 
fracture location and subsequently differentiate into 
fibroblasts, chondroblasts, and osteoblasts. This event 
represents the formation of a soft callus, which has 
the ability to stabilize the fracture site, thus allow-
ing mineralization to occur and strengthen the repair 
(McKibbin, 1978). The completion of the healing 
process is marked by the remodelling phase in which 
the callus remodels to woven and then lamellar bone. 
The recruitment of several cell populations, including 
fibroblasts, macrophages, chondroblasts, osteoclasts, 
and osteoblasts influence the repair process of frac-
tured bone. Usually the presence of osteoconductive 
surface, osteoinductive factors, immobilization of the 
fractured site and osteogenic cells lead to a success-
ful fracture healing (Giannoudis et al., 2007). How-
ever sometimes there is a serious compromise in the 
healing / reparative ability of the bone. In the various 
conditions like osteogenesis imperfect, large critical 
sized defects, infections, radiation therapy etc this re-
generative ability of bone is hindered (Kamboj, 2007; 
Mehta et al., 2010). Tissue engineering has is a po-
tential solution to overcome these difficult situations. 
It not only provides a conducive environment for the 
healing of tissues but also focuses on the regenerative 
aspects. 

TYPE OF BONE GRAFTS

Bone graft matrix and synthetic osteoconductive pol-
ymers are the osteoconductive materials. A mechani-
cal substrate over which cells anchor and along which 
cells proliferate to form the new bone serves as a scaf-
fold. The osteoblasts and growth factors serve as os-
teogenic component of bone formation (Perry, 1999).
Bone grafting in human dates back to 1668 where Job 
van Meekeren; a Dutch surgeon corrected skull defect 
in a Russian nobleman by using piece of canine skull 
xenograft. The patient was abandoned by the Chris-
tian society (Boer, 1988). Louis Xavier Eduard Leop-
old Ollier (1830-1900) suggested that the epiphyseal 
plate resection and cartilaginous stimulation can in-
hibit the bone growth Sir William Macewen (1848-
1924) developed a one-piece osteotome. Sir Robert 
Jones (1855-1933) performed tendon transplantation, 
bone grafting and restoratie procedures. The various 
classification of bone grafts are autograft, allografts, 
xenografts and synthetic grafts (Bauer and Muschler, 
2000).



NE  US
Academic                                      Publishers

Advances in Animal and Veterinary Sciences

May 2015 | Volume 3 | Special issue 4 | Page 13

Figure 3: Diagram is showing evolution of osteoblasts and osteoclasts in the formation and resorption of bone

Autografts are considered to be gold standards in 
bone grafting due to their best compatibility and easy 
acceptance by the host tissue (Samartzis et al., 2005). 
The cortical grafts which are vascularized are general-
ly superior over the non-vascularized in terms of fast-
er healing and remodelling and they provide superior 
strength during the first six weeks.

The allogeneic grafts present osteoinduction and os-
teoconduction abilities, being processed in sterile con-
ditions and stored in bone banks (Merkx et al., 2003; 
Murugan and Ramakrishna, 2005). These grafts are 
not associated with donor site morbidity and unlim-
ited amounts of graft material can be collected. Their 
main disadvantages include mostly risk of transmis-
sion of infectious diseases, host immune response and 
lower predictability for the grafting outcome. Various 
physical processing like freezing, freeze-drying, or ir-
radiation of the grafts reduces the antigenicity. Allo-
graft in equine fractures have been reported. However, 
they take a long time for incorporation. 

During the freeze drying the moisture gets removed 
and the mechanical strength of the bone is greatly 
reduced (Marx, 1993). The osteoinductive property 
is lacking in such grafts and hence freeze-dried al-

logeneic implants are usually placed in conjunction 
with autogenic grafts when reconstructing the crani-
omaxillofacial skeleton. Demineralized bone matrix 
(DBM) retains the inductive properties but becomes 
weaker in strength (Zhang et al., 1997). Removal of 
the mineral component from the bone matrix may 
expose native proteins, such as bone morphogenetic 
protein (BMP). 

Xenograft bone or collagen has been experimen-
tally explored as a bone substitute (Marchesi, 2000; 
El-Sabban et al., 2007; Stievano et al., 2008). The do-
nor site morbidity is not the constraint at all an ad-
ditionally these grafts are also ready to use and com-
mercially available. The processing aimed at removal 
of cells and proteins reduced the antigenicity of these 
grafts (Iwamoto et al., 1997) and increase the host ac-
ceptance (Basle et al., 1998). 

It is highly desirable that antigenic epitopes should 
be removed by decellularization protocols. Physical 
methods, chemical detergents and enzymatic solu-
tions can effectively remove the antigenic epitopes, 
cellular and nuclear material. The adverse host reac-
tion and graft rejection can thus be avoided. The ide-
al decellularization method preserves the native ul-
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tra-structure and composition of extra cellular matrix 
(ECM) while removal of cellular material (Ott et al., 
2008; Grayson et al., 2008; Uygun et al., 2010).

PHYSICAL METHODS OF 
DECELLULARIZATION

Freeze-thaw cycles, direct pressure, sonication, and 
agitation of the tissues are few methods by which the 
bone is rendered acellular. The tiny ice crystals formed 
inside the cell brings about the rupture of the cell 
memberane and cells lysis. There should also be cer-
tain processes developed to remove the cellular mate-
rial from the tissue which is frozen. Enzymatic treat-
ment followed by mechanical abrasion (force) helps 
removal of cells on the surface of a tissue or organ 
(e.g., urinary bladder, small intestine, skin, and am-
nion) (Hopkinson et al., 2008). However, underlying 
ultra-structure and basement membrane integrity are 
invariably damaged by any direct application of me-
chanical force (Hopkinson et al., 2008). The chem-
ical treatment: when the tissue is subjected to the 
chemical processing with acid and alkali, the cellular 
components are dissolved and nucleic acids are also 
removed (Falke et al., 2003; Freytes et al., 2004). Hy-
pertonic and hypotonic solutions also help rinse cell 
residue from within tissue following lysis. Treatment 
of cartilage with hypotonic and hypertonic solution 
showed slight reduction in number of cell nuclei and 
reduce GAG content (Elder et al., 2009). It is also 
important that these agents should be completely re-
moved from the ECM (Cebotari et al., 2010).
 
Sodium dodecyl sulfate (SDS) is used for the decel-
lularization of dense tissue and preserves the tissue 
strength also (Lumpkins et al., 2008; Nakayama et 
al., 2010). The main disadvantage is growth factors 
are also eliminated (Reing et al., 2010). The tensile 
strength and the compressive modulus were observed 
to be significantly decreased (Tamilmahan, 2013).

Triton X100 when tried on the swine tempero man-
dibular joint (TMJ), revealed decreased the mechan-
ical integrity and inferior energy dissipating capabil-
ities of the TMJ to that of the native tissue. Another 
protocol included a 1% SDS treatment which not only 
preserved the size of the discs but also the modulus 
values were preserved after decellularization and there 
was no significantly difference between the native tis-
sue and SDS treated tissue (Lumpkins et al., 2008).

Other solvents like alcohols such as glycerol render 
tissue decellularization by dehydrating and lysing cells 
(Prasertsung et al., 2008). The alcohols like methanol 
and ethanol are more effective than lipase but also fix-
es the tissue and proteins ( Jamura and Oliver, 2010). 
It is also found that ECM ultrastructure is not pre-
served (Gorschewsky et al., 2005). The lipid removal 
is aided by Acetone in tissue processingo (Lumpkins 
et al., 2008; Montoya and McFetridge, 2009). It leads 
to crosslinking of ECM and increases the strength 
(Lumpkins et al., 2008). Acetone treated bovine can-
cellous bone rendered, shortened and flattened colla-
gen bundles than native bone and bone became more 
brittle (Pathak et al., 2012).

Tissue treatment with trypsin and DNase and RNase 
also brings about the nucleotides removal and better 
preservation of GAG (Petersen et al., 2010; Grauss et 
al., 2005). The chelating agents such as EDTA, acts by 
binding the divalent cations that are present at the cell 
adhesions to the ECM, and facilitate removal of the 
cellular material from the tissue. But the Chelating 
agents alone are not sufficient for superficial cell re-
moval even with agitation; the combination treatment 
with enzymes such as trypsin or detergents is also re-
quired (Hopkinson et al., 2008).

The source of tissue if allogenic/ xenogenic requires 
complete and effective decellularization. Similar-
ly the thick and dense tissues like bone and tendons 
need a critical protocol of decellularization. The se-
lection of technique is made by keeping in mind the 
mechanical strength of the tissue. It is aimed that a 
complete cellular removal with minimum damage to 
the ECM should occur. The host tissue response fol-
lowing in vivo implantation of these scaffold materi-
als is dependent upon the efficacy of decellularization 
and removal of cell remnants. The main components 
of the ECM include collagens, glycosaminoglycans, 
non-collagenous structural proteins, and proteogly-
cans. The basement membrane is an important type 
of ECM that is composed of laminin, network-form-
ing collagen type IV, nidogen, an perlecan. Collagens 
are responsible for the basic structure of the ECM, 
providing its structural integrity. Many of the fibrillar 
collagens, including types I, II, III, V, and XI, impart 
tensile strength (Bosman and Stamenkovic, 2003) in 
healthy tissues. Glycosaminoglycans (GAGs) are re- 
sponsible for imparting gel properties to the grafts 
and are also associated with growth factors and cell
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Figure 4: Rabbit fatal Osteoblast cell culture: P0; P1; P2 and P3 are passaged. 1; 2 and 3 images after 2; 6 and 
8 days after passages. Cells become confluence (80-90% growth) within 6-8 days after passage

messenger interaction. So the GAG rich in heparin 
become more important due to the high affinity of 
cell surface receptors and many growth factors with 
heparin (Hodde et al., 1996). Signalling conducted 
through integrin-integrin interactions influences cell 
survival, proliferation, the structure and functional 
activity of the cytoskeleton, and gene transcription. 
Other ECM components include the cell-adhesive 
glycoprotein fibronectin, paracrine signalling mol-
ecules including TGF-β (hormone involved in cell 
growth and differentiation and the composition of 
the ECM), fibroblast growth factor (FGF), and other 
growth factors that mediate cell behaviour and func-
tion (Nelson and Bissell,  2006).

COMPOSITE GRAFTS AND 
SEEDING PROTOCOL

The grafts that are seeded with the proliferative cells 
specific for the tissue implanted on are said to be the 
composite grafts. The disc seeded multiple bone graft was 

successfully applied in a 52 year old woman to treat the 
segmental bone defect (Hesse et al., 2010). Implantable 
three-dimensional (3D) living constructs were prepared 
by seeding isolated bone marrow stromal cells from the pa-
tient onto decellularized bovine trabecular bone scaffolds. 
There was no pain and swelling at the site. It took a to-
tal of  5 - 7 months for the complete fusion between the im-
plant and the host bone posturgery. The proper nutrient 
supply and oxygen in the inner microenvironment of 
the scaffolds forms a basis to initiate scaffold substitu-
tion and to improve cell performance in tissue-engineered 
approaches to bone repair where ceramic biomaterial was 
seeded with mesenchymal progenitor cells (Giannoni et 
al., 2008). In one study of Liao and co-workers (2004) 
neonatal rat osteoblasts have changed the shape from 
spindle to polygonalAnd also the proliferation and adhe-
sion was more on the porous surface of the implant.

The in vitro culturing of cells is done to increase the 
effective population of cells which is required for tis-
sue engineering. These cells are required to be seeded 



NE  US
Academic                                      Publishers

Advances in Animal and Veterinary Sciences

May 2015 | Volume 3 | Special issue 4 | Page 16

Figure 5: The process of graft preparation and in vitro and in vivo evaluation 

on the ECM. The seeding can be done by static or 
dyanamic methods. Static cell seeding doesnot require 
any movement in the flow of the medium through the 
scaffold (Datta et al., 2005). Dynamic conditions may 
offer certain advantages, in contrast to static condi-
tions, since the cells are given more time and thereby 
opportunity to adhere, and thus may lead to a posi-
tive outcome through higher seeding efficiency. In our 
laboratory also the osteoblasts cells are cultured and 
expanded for the in vivo use/ seeding of the scaffold at 
a certain concentration/ density (Figure 4). The pro-
cess of graft preparation and in vitro and in vivo eval-
uation host response to extracellular matrix Scaffolds 
Host Response to Extracellular Matrix Scaffolds is 
depicted in Figure 5.

The dyanamic system of seeding comprises of the 
dyanamic flow of the media around the constructs 
and encourages more penetration of the cells into 
the scaffold core. This can be achieved with the help 
of specially designed seeding bioreactors. Gas ex-
change is performed via surface aeration (Bancroft et al., 
2003; Kitagawa et al., 2006; Vunjak-Novakovic et al., 
2005).

Host Response to Extracellular 
Matrix Scaffolds Host Response to 
Extracellular Matrix Scaffolds 

The Xenogeneic and allogeneic cellular antigens cause 
the host to release mediators of inflammation and 
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transplant tissue rejection. However, the mechanism 
of rejection still remains obscure (Badylak and Gil-
bert, 2008). The ECM is usually said to be conserved 
across species and the side effects of the immune re-
sponse can be eliminated (Allman et al., 2001). The 
adverse effects of the immune response is through 
the components that include the Galα1-3Galβ1-
4GlcNAcβ-R (α-Gal) epitope and DNA. The α-Gal 
epitope is known to cause hyperacute rejection of 
organ transplants (Oriol et al., 1993; Collins et al., 
1994). However, the ECM containing the α-Gal 
epitope were free of any adverse effects (Raeder et al., 
2002; Daly et al., 2009). 

The presence of nuclear material is also said to influ-
ence the immune response of the host. However many 
commercially available scaffolds reflects the presence 
of DNA in small quantities (Gilbert et al., 2009) .It is 
found that the remnant DNA fragments generally are 
less than 300 bp. Inspite of the presence of alpha Gal 
epitope and DNA fragments, the adverse response is 
not observed. This implies that probably a minimum 
effective amount of these components are necessary 
to elicit any side effect on the remodelling response. 
Neutrophils and macrophages are the first cells to 
face the implanted biomaterials. Initially neutrophil 
begin to invade at the site which in the absence of 
debris and endotoxins begin to disappear and mono-
nuclear cell population replaces the cell type. It is said 
that these cellular events bring about either acute or 
chronic inflammation and are associated with nega-
tive effect on healing. However, the presence of these 
cells, especially mononuclear macrophages, has been 
shown to be essential to the formation of the type 
of constructive tissue remodelling response that has 
been observed following the implantation of ECM 
scaffolds (Badylak et al., 2008; Brown et al., 2008).  

The T-lymphocyte response to xenogeneic muscle tis-
sue, syngeneic muscle tissue, and an acellular ECM 
scaffold was examined by subcutaneous implantation. 
The xenogenic imlant was rejected with signs of ne-
crosis, granuloma formation and encapsulation. There 
was an acute inflammatory response with syngeneic 
tissue and the ECM scaffold but it settled with time 
and an organized tissue was formed. Tissue cytokine 
analysis revealed that the ECM group elicited ex-
pression of interleukin (IL)-4 and suppressed the 
expression of interferon (IFN)-γ as compared to the 
xenogeneic tissue implant group. The ECM group 

elicited the production of an ECM specific antibody 
response, however it was restricted to the immuno-
globulin G (IgG) 1 isotype. Re-implantation of the 
mice with another ECM scaffold led to a secondary 
anti-ECM antibody response that was also restricted 
to the IgG1 isotype and there was no evidence of the 
formation of a Th1 type response. Further investiga-
tion confirmed that the observed responses were in 
fact T-lymphocyte dependant. So it can be concluded 
that both types of cells T and B cells respond to ECM 
scaffolds, but do not influence the constructive tissue 
remodeling of an ECM implant (Allman et al., 2001). 

Fate of the graft: Initial vacularization of the graft is 
extremely required for the graft to survive, integrate 
and function (Carano and Filvaroff, 2003). The cortical 
graft gets slowly vascularised as compared to the cancel-
lous grafts and requires an initial phase of bone resorp-
tion. The cortical grafts begin to unite at the host graft 
junction first and healing gradually moves towards the 
shaft of the graft. There is the repair and remodelling of 
cortical bone occurs at a very slow rate, and any imbal-
ance between resorption and bone formation can lead to 
bone loss and graft failure (Burchardt, 1987; Bauer and 
Muschler, 2000). Fibrotic nonunions and late graft frac-
tures are reported to be directly dependent upon the ne-
ovascularization of structural allografts with 25% clinical 
failure rate (Berrey et al., 1990). In human studies it has 
been shown that 1-2 years after surgical implantation, the 
fractures occur and are related to initiation of microfrac-
tures within the dead cortical bone (Wheeler et al., 2001). 
In contrast, cancellous bone graft is porous revascularize 
quickly, and can be rapidly incorporated and remodelled. 
In this type of graft, osteoblastic bone formation occurs 
first on the surface of necrotic trabeculae followed by os-
teoclastic bone remodelling and gradually resorbtion of 
the entrapped dead trabeculae and eventually replaces the 
entire graft with new living bone (Rashmi, 2014).

It is required that the biomechanical strength of the 
bone implant should be more due to the load bearing 
nature of the bone (Vunjak-Novakovic and Gold-
stein, 2005).

CONCLUSION

It can be concluded that the scaffolds for bone should 
be ready to use kind of stuff so that there is minimum 
time paucity after the case is presented with compli-
cated gap defects of bone. The bone bioengineering is 
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an upcoming area which offers a viable solution for 
the problems like loss of bone and limb amputation. 
The combination of regenerative cells and ECM ma-
trix not only provide a support at the site of loss but 
also provides the factors important for the bone re-
generation and healing.   
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